skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Hooks, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lymphedema, a disfiguring condition characterized by an asymmetrical swelling of the limbs, is suspected to be caused by dysfunctions in the lymphatic system. A possible source of lymphatic dysfunction is the reduced mechanosensitivity of lymphangions, the spontaneously contracting units of the lymphatic system. In this study, the entrainment of lymphangions to an oscillatory wall shear stress (OWSS) is characterized in rat thoracic ducts in relation to their shear sensitivity. The critical shear stress above which the thoracic ducts show a substantial inhibition of contraction was found to be significantly negatively correlated to the diameter of the lymphangion. The entrainment of the lymphangion to an applied OWSS was found to be significantly dependent on the difference between the applied frequency and the intrinsic frequency of contraction of the lymphangion. The strength of the entrainment was also positively correlated to the applied shear stress when the applied shear was less than the critical shear stress of the vessel. The ejection fraction and fractional pump flow were also affected by the difference between the frequency of the applied OWSS and the vessel's intrinsic contraction frequency. The results suggest an adaptation of the lymphangion contractility to the existing oscillatory shear stress as a function of its intrinsic contractility and shear sensitivity. These adaptations might be crucial to ensure synchronized contraction of lymphangions through mechanosensitive means and might help explain the lymphatic dysfunctions that result from impaired mechanosensitivity.

    more » « less