skip to main content

Search for: All records

Creators/Authors contains: "Hopkins, Patrick E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Materials with tunable thermal properties enable on-demand control of temperature and heat flow, which is an integral component in the development of solid-state refrigeration, energy scavenging, and thermal circuits. Although gap-based and liquid-based thermal switches that work on the basis of mechanical movements have been an effective approach to control the flow of heat in the devices, their complex mechanisms impose considerable costs in latency, expense, and power consumption. As a consequence, materials that have multiple solid-state phases with distinct thermal properties are appealing for thermal management due to their simplicity, fast switching, and compactness. Thus, an ideal thermal switch should operate near or above room temperature, have a simple trigger mechanism, and offer a quick and large on/off switching ratio. In this study, we experimentally demonstrate that manipulating phonon scattering rates can switch the thermal conductivity of antiferroelectric PbZrO 3 bidirectionally by −10% and +25% upon applying electrical and thermal excitation, respectively. Our approach takes advantage of two separate phase transformations in PbZrO 3 that alter the phonon scattering rate in different manners. In this study, we demonstrate that PbZrO 3 can serve as a fast (<1 second), repeatable, simple trigger, and reliable thermal switch with a net switchingmore »ratio of nearly 38% from ~1.20 to ~1.65 W m −1 K −1 .« less
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available April 13, 2023
  3. Free, publicly-accessible full text available February 22, 2023
  4. A novel n-type copolymer dopant polystyrene-polyvinyl hexylpyridinium fluoride (PSpF) with fluoride anion is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. To our knowledge, it is the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm-1 and high power factor of 67 μW m-1 K-2 are achieved for PSpF doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm-1 at 88 ℃ and outstanding thermal stability were recorded. Further, organic transistors of PSpF-doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2 V-1 s-1, respectively. The results suggest that polystyrene-polyvinyl pyridinium salt copolymers with fluoride anion are promising for high performance n-type all-polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to Seebeck coefficient, high power factor, thermal stability and broad processing window.
    Free, publicly-accessible full text available April 20, 2023
  5. Low-dimensional materials with chain-like (one-dimensional) or layered (two-dimensional) structures are of significant interest due to their anisotropic electrical, optical, and thermal properties. One material with a chain-like structure, BaTiS3 (BTS), was recently shown to possess giant in-plane optical anisotropy and glass-like thermal conductivity. To understand the origin of these effects, it is necessary to fully characterize the optical, thermal, and electronic anisotropy of BTS. To this end, BTS crystals with different orientations (a- and c-axis orientations) were grown by chemical vapor transport. X-ray absorption spectroscopy was used to characterize the local structure and electronic anisotropy of BTS. Fourier transform infrared reflection/transmission spectra show a large in-plane optical anisotropy in the a-oriented crystals, while the c-axis oriented crystals were nearly isotropic in-plane. BTS platelet crystals are promising uniaxial materials for infrared optics with their optic axis parallel to the c-axis. The thermal conductivity measurements revealed a thermal anisotropy of ∼4.5 between the c- and a-axis. Time-domain Brillouin scattering showed that the longitudinal sound speed along the two axes is nearly the same, suggesting that the thermal anisotropy is a result of different phonon scattering rates.
    Free, publicly-accessible full text available June 1, 2023
  6. Abstract Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.10 ± 0.01 W m −1 K −1 for high tellurium content with a density nearly twice that of amorphous silicon. Using ab-initio simulations integrated with lattice dynamics, we attribute the ultralow thermal conductivity of SiTe to the suppressed contribution of extended modes of vibration, namely propagons and diffusons. This leads to a large shift in the mobility edge - a factor of five - towards lower frequency and localization of nearly 42% of the modes. This localization is the result of reductions in coordination number and a transition from over-constrained to under-constrained atomic network.
    Free, publicly-accessible full text available December 1, 2022
  7. Free, publicly-accessible full text available March 2, 2023
  8. Abstract As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices 1–9 . However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity 10,11 , are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries 12,13 , the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate–calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantifiedmore »to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.« less
    Free, publicly-accessible full text available January 27, 2023