skip to main content


Search for: All records

Creators/Authors contains: "Hopkins, Philip F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Cosmic rays (CRs) with energies ≪ TeV comprise a significant component of the interstellar medium (ISM). Major uncertainties in CR behaviour on observable scales (much larger than CR gyroradii) stem from how magnetic fluctuations scatter CRs in pitch angle. Traditional first-principles models, which assume these magnetic fluctuations are weak and uniformly scatter CRs in a homogeneous ISM, struggle to reproduce basic observables such as the dependence of CR residence times and scattering rates on rigidity. We therefore explore a new category of ‘patchy’ CR scattering models, wherein CRs are pre-dominantly scattered by intermittent strong scattering structures with small volume-filling factors. These models produce the observed rigidity dependence with a simple size distribution constraint, such that larger scattering structures are rarer but can scatter a wider range of CR energies. To reproduce the empirically inferred CR scattering rates, the mean free path between scattering structures must be $\ell _{\rm mfp}\sim 10\, {\rm pc}$ at GeV energies. We derive constraints on the sizes, internal properties, mass/volume-filling factors, and the number density any such structures would need to be both physically and observationally consistent. We consider a range of candidate structures, both large scale (e.g. H ii regions) and small scale (e.g. intermittent turbulent structures, perhaps even associated with radio plasma scattering) and show that while many macroscopic candidates can be immediately ruled out as the primary CR scattering sites, many smaller structures remain viable and merit further theoretical study. We discuss future observational constraints that could test these models.

     
    more » « less
  2. ABSTRACT

    We study the kinematics of stars both at their formation and today within 14 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. We quantify the relative importance of cosmological disc settling and post-formation dynamical heating. We identify three eras: a Pre-Disc Era (typically ≳ 8 Gyr ago), when stars formed on dispersion-dominated orbits; an Early-Disc Era (≈8–4 Gyr ago), when stars started to form on rotation-dominated orbits but with high velocity dispersion, σform; and a Late-Disc Era (≲ 4 Gyr ago), when stars formed with low σform. σform increased with time during the Pre-Disc Era, peaking ≈8 Gyr ago, then decreased throughout the Early-Disc Era as the disc settled and remained low throughout the Late-Disc Era. By contrast, the dispersion measured today, σnow, increases monotonically with age because of stronger post-formation heating for Pre-Disc stars. Importantly, most of σnow was in place at formation, not added post-formation, for stars younger than ≈10 Gyr. We compare the evolution of the three velocity components: at all times, σR, form > σϕ, form > σZ, form. Post-formation heating primarily increased σR at ages ≲ 4 Gyr but acted nearly isotropically for older stars. The kinematics of young stars in FIRE-2 broadly agree with the range observed across the MW, M31, M33, and PHANGS-MUSE galaxies. The lookback time that the disc began to settle correlates with its dynamical state today: earlier-settling galaxies currently form colder discs. Including stellar cosmic-ray feedback does not significantly change disc rotational support at fixed stellar mass.

     
    more » « less
  3. ABSTRACT

    Partial dust obscuration in active galactic nuclei (AGNs) has been proposed as a potential explanation for some cases of AGN variability. The dust–gas mixture present in AGN tori is accelerated by radiation pressure, leading to the launching of an AGN wind. Dust under these conditions has been shown to be unstable to a generic class of fast-growing resonant drag instabilities (RDIs). In this work, we present the first numerical simulations of radiation-driven outflows that explicitly include dust dynamics in conditions resembling AGN winds. We investigate the implications of RDIs on the torus morphology, AGN variability, and the ability of radiation to effectively launch a wind. We find that the RDIs rapidly develop, reaching saturation at times much shorter than the global time-scales of the outflows, resulting in the formation of filamentary structure on box-size scales with strong dust clumping and super-Alfvénic velocity dispersions. The instabilities lead to fluctuations in dust opacity and gas column density of 10–20  per cent when integrated along mock observed lines of sight to the quasar accretion disc. These fluctuations occur over year to decade time-scales and exhibit a red-noise power spectrum commonly observed for AGNs. Additionally, we find that the radiation effectively couples with the dust–gas mixture, launching highly supersonic winds that entrain 70–90  per cent of the gas, with a factor of ≲3 photon momentum loss relative to the predicted multiple-scattering momentum loading rate. Therefore, our findings suggest that RDIs play an important role in driving the clumpy nature of AGN tori and generating AGN variability consistent with observations.

     
    more » « less
  4. ABSTRACT

    Synchrotron emission is one of few observable tracers of galactic magnetic fields (B) and cosmic rays (CRs). Much of our understanding of B in galaxies comes from utilizing synchrotron observations in conjunction with several simplifying assumptions of equipartition models, however, it remains unclear how well these assumptions hold, and what B these estimates physically represent. Using Feedback in Realistic Environments project simulations which self-consistently evolve CR proton, electron, and positron spectra from MeV to TeV energies, we present the first synthetic synchrotron emission predictions from simulated L* galaxies with ‘live’ spectrally resolved CR-magnetohydrodynamic. We find that synchrotron emission can be dominated by relatively cool and dense gas, resulting in equipartition estimates of B with fiducial assumptions underestimating the ‘true’ B in the gas that contributes the most emission by factors of 2–3 due to small volume-filling factors. Motivated by our results, we present an analytical framework that expands upon equipartition models for estimating B in a multiphase medium. Comparing our spectrally resolved synchrotron predictions to simpler spectral assumptions used in galaxy simulations with CRs, we find that spectral evolution can be crucial for accurate synchrotron calculations towards galactic centres, where loss terms are large.

     
    more » « less
  5. ABSTRACT We use high-resolution, hydrodynamic, galaxy simulations from the Latte suite of FIRE-2 simulations to investigate the inherent variation of dark matter in sub-sampled regions around the Solar Circle of a Milky Way-type analogue galaxy and its impact on direct dark matter detection. These simulations show that the baryonic back reaction, as well as the assembly history of substructures, has lasting impacts on the dark matter’s spatial and velocity distributions. These are experienced as ‘gusts’ of dark matter wind around the Solar Circle, potentially complicating interpretations of direct detection experiments on Earth. We find that the velocity distribution function in the galactocentric frame shows strong deviations from the Maxwell Boltzmann form typically assumed in the fiducial Standard Halo Model, indicating the presence of high-velocity substructures. By introducing a new numerical integration technique that removes any dependencies on the Standard Halo Model, we generate event-rate predictions for both single-element Germanium and compound Sodium Iodide detectors, and explore how the variability of dark matter around the Solar Circle influences annual modulation signal predictions. We find that these velocity substructures contribute additional astrophysical uncertainty to the interpretation of event rates, although their impact on summary statistics, such as the peak day of annual modulation, is generally low. 
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  6. Abstract

    Dark sector theories naturally lead to multicomponent scenarios for dark matter where a subcomponent can dissipate energy through self-interactions, allowing it to efficiently cool inside galaxies. We present the first cosmological hydrodynamical simulations of Milky Way analogs where the majority of dark matter is collisionless cold dark matter (CDM) but a subcomponent (6%) is strongly dissipative minimal atomic dark matter (ADM). The simulations, implemented inGIZMOand utilizing FIRE-2 galaxy formation physics to model the standard baryonic sector, demonstrate that the addition of even a small fraction of dissipative dark matter can significantly impact galactic evolution despite being consistent with current cosmological constraints. We show that ADM gas with roughly standard model–like masses and couplings can cool to form a rotating “dark disk” with angular momentum closely aligned with the visible stellar disk. The morphology of the disk depends sensitively on the parameters of the ADM model, which affect the cooling rates in the dark sector. The majority of the ADM gas gravitationally collapses into dark “clumps” (regions of black hole or mirror star formation), which form a prominent bulge and a rotating thick disk in the central galaxy. These clumps form early and quickly sink to the inner ∼kiloparsec of the galaxy, affecting the galaxy’s star formation history and present-day baryonic and CDM distributions.

     
    more » « less
  7. ABSTRACT

    Modelling self-gravity of collisionless fluids (e.g. ensembles of dark matter, stars, black holes, dust, and planetary bodies) in simulations is challenging and requires some force softening. It is often desirable to allow softenings to evolve adaptively, in any high-dynamic range simulation, but this poses unique challenges of consistency, conservation, and accuracy, especially in multiphysics simulations where species with different ‘softening laws’ may interact. We therefore derive a generalized form of the energy-and-momentum conserving gravitational equations of motion, applicable to arbitrary rules used to determine the force softening, together with consistent associated time-step criteria, interaction terms between species with different softening laws, and arbitrary maximum/minimum softenings. We also derive new methods to maintain better accuracy and conservation when symmetrizing forces between particles. We review and extend previously discussed adaptive softening schemes based on the local neighbour particle density, and present several new schemes for scaling the softening with properties of the gravitational field, i.e. the potential or acceleration or tidal tensor. We show that the ‘tidal softening’ scheme not only represents a physically motivated, translation and Galilean invariant and equivalence-principle respecting (and therefore conservative) method but also imposes negligible time-step or other computational penalties, ensuring that pairwise two-body scattering is small compared to smooth background forces and can resolve outstanding challenges in properly capturing tidal disruption of substructures (minimizing artificial destruction) while also avoiding excessive N-body heating. We make all of this public in the GIZMO code.

     
    more » « less
  8. Abstract

    The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.

     
    more » « less
  9. ABSTRACT

    Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR effects on galactic (≳ kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.

     
    more » « less
  10. Abstract

    Observations of local star-forming galaxies (SFGs) show a tight correlation between their singly ionized carbon line luminosity ($L_{\rm [C\, \small {II}]}$) and star formation rate (SFR), suggesting that $L_{\rm [C\, \small {II}]}$ may be a useful SFR tracer for galaxies. Some other galaxy populations, however, are found to have lower $L_{\rm [C\, \small {II}]}{}/{}\rm SFR$ than local SFGs, including the infrared-luminous, starburst galaxies at low and high redshifts as well as some moderately star-forming galaxies at the epoch of re-ionization (EoR). The origins of this ‘$\rm [C\, \small {II}]$ deficit’ is unclear. In this work, we study the $L_{\rm [C\, \small {II}]}$-SFR relation of galaxies using a sample of z = 0 − 8 galaxies with M* ≈ 107 − 5 × 1011 M⊙ extracted from cosmological volume and zoom-in simulations from the Feedback in Realistic Environments (fire) project. We find a simple analytic expression for $L_{\rm [C\, \small {II}]}$/SFR of galaxies in terms of the following parameters: mass fraction of $\rm [C\, \small {II}]$-emitting gas ($f_{\rm [C\, \small {II}]}$), gas metallicity (Zgas), gas density (ngas) and gas depletion time ($t_{\rm dep}{}={}M_{\rm gas}{}/{}\rm SFR$). We find two distinct physical regimes: $\rm H_2$-rich galaxies where tdep is the main driver of the $\rm [C\, \small {II}]$ deficit and $\rm H_2$-poor galaxies where Zgas is the main driver. The observed $\rm [C\, \small {II}]$ deficit of IR-luminous galaxies and early EoR galaxies, corresponding to the two different regimes, is due to short gas depletion time and low gas metallicity, respectively. Our result indicates that the $\rm [C\, \small {II}]$ deficit is a common phenomenon of galaxies, and caution needs to be taken when applying a constant $L_{\rm [C\, \small {II}]}$-to-SFR conversion factor derived from local SFGs to estimate cosmic SFR density at high redshifts and interpret data from upcoming $\rm [C\, \small {II}]$ line intensity mapping experiments.

     
    more » « less