skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hopkins, Samuel B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2026
  2. Free, publicly-accessible full text available June 15, 2026
  3. We introduce and study the problem of posterior inference on tree-structured graphical models in the presence of a malicious adversary who can corrupt some observed nodes. In the well-studied broadcasting on trees model, corresponding to the ferromagnetic Ising model on a d-regular tree with zero external field, when a natural signal-to-noise ratio exceeds one (the celebrated Kesten-Stigum threshold), the posterior distribution of the root given the leaves is bounded away from Ber(1/2), and carries nontrivial information about the sign of the root. This posterior distribution can be computed exactly via dynamic programming, also known as belief propagation. We first confirm a folklore belief that a malicious adversary who can corrupt an inverse-polynomial fraction of the leaves of their choosing makes this inference impossible. Our main result is that accurate posterior inference about the root vertex given the leaves is possible when the adversary is constrained to make corruptions at a ρ-fraction of randomly-chosen leaf vertices, so long as the signal-to-noise ratio exceeds O(logd) and ρ≤cε for some universal c>0. Since inference becomes information-theoretically impossible when ρ≫ε, this amounts to an information-theoretically optimal fraction of corruptions, up to a constant multiplicative factor. Furthermore, we show that the canonical belief propagation algorithm performs this inference. 
    more » « less
  4. We study the fundamental problem of estimating the mean of a d-dimensional distribution with covariance Σ≼σ2Id given n samples. When d=1, \cite{catoni} showed an estimator with error (1+o(1))⋅σ2log1δn−−−−−√, with probability 1−δ, matching the Gaussian error rate. For d>1, a natural estimator outputs the center of the minimum enclosing ball of one-dimensional confidence intervals to achieve a 1−δ confidence radius of 2dd+1−−−√⋅σ(dn−−√+2log1δn−−−−−√), incurring a 2dd+1−−−√-factor loss over the Gaussian rate. When the dn−−√ term dominates by a log1δ−−−−√ factor, \cite{lee2022optimal-highdim} showed an improved estimator matching the Gaussian rate. This raises a natural question: Is the 2dd+1−−−√ loss \emph{necessary} when the 2log1δn−−−−−√ term dominates? We show that the answer is \emph{no} -- we construct an estimator that improves over the above naive estimator by a constant factor. We also consider robust estimation, where an adversary is allowed to corrupt an ϵ-fraction of samples arbitrarily: in this case, we show that the above strategy of combining one-dimensional estimates and incurring the 2dd+1−−−√-factor \emph{is} optimal in the infinite-sample limit. 
    more » « less
  5. We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d−−√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))), while the complexity against adaptive adversaries is Θ~(max(d−−√α2,dε2α4)), which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting. 
    more » « less
  6. We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given n samples from a (sub-)Gaussian distribution with unknown mean μ and covariance Σ, our (ε,δ)-differentially private estimator produces μ~ such that ∥μ−μ~∥Σ≤α as long as n≳dα2+dlog1/δ√αε+dlog1/δε. The Mahalanobis error metric ∥μ−μ^∥Σ measures the distance between μ^ and μ relative to Σ; it characterizes the error of the sample mean. Our algorithm runs in time O~(ndω−1+nd/ε), where ω<2.38 is the matrix multiplication exponent. We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above. Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With n≳d3/2 samples, our estimate is accurate in spectral norm. This is the first such algorithm using n=o(d2) samples, answering an open question posed by Alabi et al. (2022). With n≳d2 samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance. Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently. 
    more » « less
  7. Gergely Neu and Lorenzo Rosasco (Ed.)
  8. We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples. 
    more » « less