Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present results from an extensive follow-up campaign of the tidal disruption event (TDE) ASASSN-15oi spanningδt ∼ 10–3000 days, offering an unprecedented window into the multiwavelength properties of a TDE during its first ≈8 yr of evolution. ASASSN-15oi is one of the few TDEs with strong detections at X-ray, optical/UV, and radio wavelengths and it also featured two delayed radio flares atδt ∼ 180 days andδt ∼ 1400 days. Our observations atδt > 1400 days reveal an absence of thermal X-rays, a late-time variability in the nonthermal X-ray emission, and sharp declines in the nonthermal X-ray and radio emission atδt ∼ 2800 days and ∼3000 days, respectively. The UV emission shows no significant evolution atδt > 400 days and remains above the pre-TDE level. We show that a cooling envelope model can explain the thermal emission consistently across all epochs. We also find that a scenario involving episodic ejection of material due to stream–stream collisions can possibly explain the first radio flare. Given the peculiar spectral and temporal evolution of the late-time emission, however, constraining the origins of the second radio flare and the nonthermal X-rays remains challenging. Our study underscores the critical role of long-term, multiwavelength follow-up to fully characterize the extended evolutionary phases of a TDE.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Abstract The main science aim of the BlackGEM array is to detect optical counterparts to gravitational wave mergers. Additionally, the array will perform a set of synoptic surveys to detect Local Universe transients and short timescale variability in stars and binaries, as well as a six-filter all-sky survey down to ∼22nd mag. The BlackGEM Phase-I array consists of three optical wide-field unit telescopes. Each unit uses anf/5.5 modified Dall-Kirkham (Harmer-Wynne) design with a triplet corrector lens, and a 65 cm primary mirror, coupled with a 110Mpix CCD detector, that provides an instantaneous field-of-view of 2.7 square degrees, sampled at 0.″564 pixel−1. The total field-of-view for the array is 8.2 square degrees. Each telescope is equipped with a six-slot filter wheel containing an optimised Sloan set (BG-u, BG-g, BG-r, BG-i, BG-z) and a wider-band 440–720 nm (BG-q) filter. Each unit telescope is independent from the others. Cloud-based data processing is done in real time, and includes a transient-detection routine as well as a full-source optimal-photometry module. BlackGEM has been installed at the ESO La Silla observatory as of 2019 October. After a prolonged COVID-19 hiatus, science operations started on 2023 April 1 and will run for five years. Aside from its core scientific program, BlackGEM will give rise to a multitude of additional science cases in multi-colour time-domain astronomy, to the benefit of a variety of topics in astrophysics, such as infant supernovae, luminous red novae, asteroseismology of post-main-sequence objects, (ultracompact) binary stars, and the relation between gravitational wave counterparts and other classes of transients.more » « lessFree, publicly-accessible full text available November 1, 2025
-
null (Ed.)ABSTRACT We present X-ray and radio observations of what may be the closest Type Iax supernova (SN) to date, SN 2014dt (d = 12.3–19.3 Mpc), and provide tight constraints on the radio and X-ray emission. We infer a specific radio luminosity $$L_R\lt (1.0\!-\!2.4)\times 10^{25}\, \rm {erg\, s^{-1}\, Hz^{-1}}$$ at a frequency of 7.5 GHz and a X-ray luminosity $$L_X\lt 1.4\times 10^{38}\, \rm {erg\, s^{-1}}$$ (0.3–10 keV) at ∼38–48 d post-explosion. We interpret these limits in the context of Inverse Compton (IC) emission and synchrotron emission from a population of electrons accelerated at the forward shock of the explosion in a power-law distribution $$N_e(\gamma _e)\propto \gamma _e^{-p}$$ with p = 3. Our analysis constrains the progenitor system mass-loss rate to be $$\dot{M}\lt 5.0 \times 10^{-6} \rm {M_{\odot }\, yr^{-1}}$$ at distances $$r\lesssim 10^{16}\, \rm {cm}$$ for an assumed wind velocity $$v_w=100\, \rm {km\, s^{-1}}$$, and a fraction of post-shock energy into magnetic fields and relativistic electrons of ϵB = 0.01 and ϵe = 0.1, respectively. This result rules out some of the parameter space of symbiotic giant star companions, and it is consistent with the low mass-loss rates expected from He-star companions. Our calculations also show that the improved sensitivity of the next-generation Very Large Array (ngVLA) is needed to probe the very low-density media characteristic of He stars that are the leading model for binary stellar companions of white dwarfs giving origin to Type Iax SNe.more » « less
-
A core collapse supernova occurs when exothermic fusion ceases in the core of a massive star, which is typically caused by exhaustion of nuclear fuel. Theory predicts that fusion could be interrupted earlier by merging of the star with a compact binary companion. We report a luminous radio transient, VT J121001+495647, found in the Very Large Array Sky Survey. The radio emission is consistent with supernova ejecta colliding with a dense shell of material, potentially ejected by binary interaction in the centuries before explosion. We associate the supernova with an archival x-ray transient, which implies that a relativistic jet was launched during the explosion. The combination of an early relativistic jet and late-time dense interaction is consistent with expectations for a merger-driven explosion.more » « less
-
null (Ed.)Context. We present observations of ZTF20aatqesi (SN 2020faa). This Type II supernova (SN) displays a luminous light curve (LC) that started to rebrighten from an initial decline. We investigate this in relation to the famous SN iPTF14hls, which received a great deal of attention and multiple interpretations in the literature, but whose nature and source of energy still remain unknown. Aims. We demonstrate the great similarity between SN 2020faa and iPTF14hls during the first 6 months, and use this comparison to forecast the evolution of SN 2020faa and to reflect on the less well observed early evolution of iPTF14hls. Methods. We present and analyse our observational data, consisting mainly of optical LCs from the Zwicky Transient Facility in the gri bands and of a sequence of optical spectra. We construct colour curves and a bolometric lc, and we compare ejecta-velocity and black-body radius evolutions for the two supernovae (SNe) and for more typical Type II SNe. Results. The LCs show a great similarity with those of iPTF14hls over the first 6 months in luminosity, timescale, and colour. In addition, the spectral evolution of SN 2020faa is that of a Type II SN, although it probes earlier epochs than those available for iPTF14hls. Conclusions. The similar LC behaviour is suggestive of SN 2020faa being a new iPTF14hls. We present these observations now to advocate follow-up observations, since most of the more striking evolution of SN iPTF14hls came later, with LC undulations and a spectacular longevity. On the other hand, for SN 2020faa we have better constraints on the explosion epoch than we had for iPTF14hls, and we have been able to spectroscopically monitor it from earlier phases than was done for the more famous sibling.more » « less
An official website of the United States government
