- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000001001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Gaiser, Evelyn E (2)
-
Hormiga, Samantha (2)
-
Fourqurean, James W (1)
-
Ross, Michael S (1)
-
Vidales, Rosario (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coastal ecosystems rapidly transform as sea levels rise faster than ecosystems can build elevation through biological processes that accrete organic matter and inorganic sediment. Benthic microbial communities (periphyton) are a crucial driver of sediment accretion in coastal wetlands by forming, trapping, and stabilizing sediments. Inorganic sediments can be either generated in situ by mineral-accreting organisms (e.g., calcium carbonates by periphyton), or materials can be transported from a different origin when sediments become resuspended and displaced, such as during high-wind weather events. In situ-generated sedimentary materials may contribute significantly to elevation gains. This study examines the drivers of coastal periphyton mineral production and whether periphytic diatoms may be used to characterize gradients in these drivers. Periphyton mineral production rates and diatom assemblage composition were measured along three coastal gradients of surface water salinity, conductivity, pH, and periphyton nutrient content in the Biscayne Bay Coastal Wetlands of South Florida. Periphyton mineral production rates ranged from 0.20-0.53 g/m2/d and were greatest at sites with the highest periphyton total carbon and mineral content while lowest at sites with the highest periphyton organic content and total nitrogen and soil depth. Diatom assemblages that sorted consistently along the coastal salinity gradient were reliable indicators of periphyton mineral production, with seven taxa indicating high rates and seven indicating low rates. Diatoms can provide a helpful link between biotic and abiotic processes, indicating where periphyton-driven mineral production contributes most to inorganic carbon cycling and mineral-driven elevation recovery and, hence, to resiliency to sea level rise.more » « lessFree, publicly-accessible full text available February 20, 2026
-
Hormiga, Samantha; Gaiser, Evelyn E (, Environmental Data Initiative)Environmental and periphyton data were collected from transects in the Biscayne Bay Coastal Wetlands (BBCW) during the wet and dry seasons of 2022 to investigate the rate of carbonate sediment production by periphyton. Environmental data include surface water metrics (pH, salinity, conductivity, and water depth) and soil depths. Periphyton data include nutrient, production, and diatom species composition in samples collected from artificial substrates (periphytometers) placed in the field. Data collection for this project is complete, although the South Florida Management District continues to monitor these transects for a larger ongoing BBCW project.more » « less
An official website of the United States government
