skip to main content


Search for: All records

Creators/Authors contains: "Horn, Sally P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study integrates diatom analysis with existing records of pollen, charcoal, elemental composition, and stable light isotopes to expand upon the 4200-year history of human activity and climate change from Laguna Los Mangos in southern Pacific Costa Rica. We counted diatoms in peroxide-treated samples and analyzed community composition using cluster analysis, revealing four distinct assemblage zones with diatom variability most closely correlated with phosphorus, titanium, and organic content. The earliest assemblage (Zone D, 4150–3430 cal yr BP) was dominated by Encyonema silesiacum and Nitzschia incognita and aligned with a period of deforestation, erosion, and abundant macrophytes. Gomphonema affine proliferated in Zone C (3430–2450 cal yr BP), reflecting increased pH and productivity likely caused by agriculture-induced nutrient loading. We attributed the preservation gap from 3290 to 2970 cal yr BP in Zone C to silica depletion and erosional deposition that induced decline in diatom abundance by diluting valve concentrations in lake sediments. Nitzschia incognita and G. affine became the dominant taxa in Zone B (2450–1400 cal yr BP), likely reflecting eutrophy, increasing conductivity, and drying climate. Dominance of Diadesmis confervacea indicated reduced lake level in Zone A (1400 cal yr BP–modern) at the onset of the Terminal Classic Drought (TCD). A hiatus in the record indicates lake desiccation from 950 to 450 cal yr BP. During the Little Ice Age (LIA), diatoms reflect conditions similar to Zone B indicating increased lake level, circumneutral pH, and eutrophy. Refilling of the lake indicates increased precipitation during the LIA despite evidence of severe regional drought reported at other sites. Variable precipitation during this period likely resulted from the combined effects of Spanish contact, agricultural collapse, forest recovery, and shifts in Atlantic and Pacific climate forcing mechanisms. Overall, the Los Mangos diatom record reflects shallow, slightly alkaline, eutrophic conditions influenced by nutrient enrichment, erosion, and deforestation associated with maize agriculture.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. ABSTRACT

    We conducted compound‐specific stable hydrogen (δD) and carbon (δ13C) isotope analysis onn‐alkanes from terrestrial leaf waxes preserved in a 10 000‐year sediment profile from Lago de las Morrenas 1 (9.4925° N, 83.4848° W, 3480 m), a glacial lake on the Chirripó massif of the Cordillera de Talamanca in Costa Rica. Our results demonstrate millennial‐scale variations in hydroclimate across the Holocene, with drier than average conditions in the highlands during the early Holocene, but with gradually increasing precipitation; mesic conditions during the middle Holocene with a gradual drying trend; and highly variable conditions during the late Holocene. This general pattern is punctuated by several centennial‐scale manifestations of global climate events, including dry conditions during the 8200, 5200 and 4200 cal a bpevents and the Terminal Classic Drought (1200–850 cal a bp). Our δ13C analyses demonstrate that carbon isotope signals are responding to changes in hydroclimate at the site and reinforce prior interpretations of a stable páramo plant community that established following deglaciation and persisted throughout the Holocene. The shifts in hydroclimate inferred from analyses ofn‐alkanes in Lago de las Morrenas 1 sediments show correspondence with charcoal records in multiple lakes, with fires most common during drier intervals.

     
    more » « less
  3. Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change. 
    more » « less
  4. null (Ed.)
  5. Laguna Santa Elena (8.9290° N, 82.9257° W, 1055 m a.s.l.) is a small lake in the Diquís archaeological sub-region of southern Pacific Costa Rica. Previous analyses of pollen and charcoal in a sediment core from Santa Elena revealed a nearly 2,000 year history of vegetation change, maize cultivation and site occupation that is consistent with the archaeological record from the lake basin and surrounding area. Here we present the results of new loss-on-ignition, geochemical and bulk stable carbon (δ13C) and nitrogen (δ15N) isotope analyses of the Santa Elena sediments that supplement and refine the previous reconstruction. Like many lakes in Central America and the Caribbean, Laguna Santa Elena was a magnet for humans throughout its history. As a result, the lake experienced vegetation modification by humans and maize cultivation at varying intensities over a long duration. The Santa Elena sediments provide a record of palaeoenvironmental change during times of major culture change and increasing cultural complexity in the Diquís region, which occurred during intervals of broader changes driven by external forcing mechanisms, including the Terminal Classic Drought (TCD), the Little Ice Age (LIA) and the Spanish Conquest. Our high resolution lake sediment study from Santa Elena reveals details of these events at the local scale that are unobtainable by other means, including the timing of the initial intensification of maize cultivation at ca. 1,570 cal BP (AD 380) and two intervals of population decline coinciding with the TCD at ca. 1,085 cal BP (AD 865) and near the start of the LIA at ca. 683 cal BP (AD 1267). 
    more » « less
  6. We present a lake-sediment record of pre-Columbian agriculture and fire history from the lowlands of southern Pacific Costa Rica that captures the arrival of maize agriculture at ca. 3360 cal yr BP in the Diquís subregion of the Gran Chiriquí archeological region. Our 4200-year record from Laguna Los Mangos begins 1000 to 2000 years earlier than other lake records from the region and provides the first microfossil and geochemical evidence of vegetation and fire prior to the establishment of maize agriculture. This early portion of the record shows evidence of fire events associated with land clearance or field preparation and maintenance for subsistence activities. Alternatively, these were wildfires ignited unintentionally by people or naturally by lightning or volcanism. Evidence of early maize by ca. 3200 cal yr BP was found at Laguna Zoncho in the southeastern section of the Diquís subregion. Our discovery of early maize agriculture at ca. 3360 cal yr BP in the Laguna Los Mangos watershed in the northwestern portion of the Diquís subregion indicates a rapid adoption of maize agriculture in the region after initial introduction. Pre-Columbian agriculture and fire activity at Los Mangos is nearly continual until historic times, but with a decline after ca. 1170 cal yr BP, coincident with the early Terminal Classic Drought (TCD). We infer a pronounced drying of the lowland environment at Laguna Los Mangos based on a depositional hiatus in the record at ca. 950 during late TCD. Agricultural proxies indicate reduced watershed activity during the ‘Little Ice Age’ following Spanish contact in southern Central America until the 20th century. 
    more » « less