skip to main content


Search for: All records

Creators/Authors contains: "Horne, W. Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sequence-encoded folding is the foundation of protein structure and is also possible in synthetic chains of artificial chemical composition. In natural proteins, the characteristics of the unfolded state are as important as those of the folded state in determining folding energetics. While much is known about folded structures adopted by artificial protein-like chains, corresponding information about the unfolded states of these molecules is lacking. Here, we report the consequences of altered backbone composition on the structure, stability, and dynamics of the folded and unfolded states of a compact helix-rich protein. Characterization through a combination of biophysical experiments and atomistic simulation reveals effects of backbone modification that depend on both the type of artificial monomers employed and where they are applied in sequence. In general, introducing artificial connectivity in a way that reinforces characteristics of the unfolded state ensemble of the prototype natural protein minimizes the impact of chemical changes on folded stability. These findings have implications in the design of protein mimetics and provide an atomically detailed picture of the unfolded state of a natural protein and artificial analogues under non-denaturing conditions. 
    more » « less
  2. Petersson, E. James (Ed.)
    Recent years have seen a growing number of examples of designed oligomeric molecules with artificial backbone connectivity that are capable of adopting complex folded tertiary structures analogous to those seen in natural proteins. A range of experimental techniques from structural biology and biophysics have been brought to bear in the study of these proteomimetic agents. Here, we discuss some considerations encountered in the characterization of high-resolution folded structure as well as folding thermodynamics of protein-like artificial backbones. We provide an overview of the use of X-ray crystallography and NMR spectroscopy in such systems and review example applications of these methods in the primary literature. Further, we provide detailed protocols for two experiments that have proved useful in our prior and ongoing efforts to compare folding thermodynamics between natural protein domains and heterogeneous-backbone counterparts. 
    more » « less
  3. Abstract

    The mimicry of protein tertiary folds by chains artificial in backbone chemical composition leads to proteomimetic analogues with potential utility as bioactive agents and as tools, to shed light on biomacromolecule behavior. Notable successes toward such molecules have been achieved; however, as protein structural diversity is vast, design principles must be continually honed as they are applied to new prototype folding patterns. One specific structure where a gap remains in understanding how to effectively generate modified backbone analogues is the metal‐binding β‐turn found in zinc finger domains. The literature precedent suggests several factors that may act in concert, including the artificial moiety used to modify the turn, the sequence in which it is applied, and modifications present elsewhere in the domain. Here, we report efforts to gain insights into these issues and leverage these insights to construct a zinc finger mimetic with backbone modifications throughout its constituent secondary structures. We first conduct a systematic comparison of four turn mimetics in a common host sequence, quantifying relative efficacy for use in a metal‐binding context. We go on to construct a proteomimetic zinc finger domain in which the helix, strands, and turn are simultaneously modified, resulting in a variant with 23% artificial residues, a tertiary fold indistinguishable from the prototype, and a folded stability comparable to the natural backbone on which the variant is based. Collectively, the results reported provide new insights into the effects of backbone modification on the structure and stability of metal‐binding domains and help inform the design of metalloprotein mimetics.

     
    more » « less
  4. Abstract

    This work presents new results and summarizes literature results on the chiral induced spin selectivity (CISS) effect observed for amino acids, peptides, and DNA. To facilitate robust comparisons between measurements of different types and by different groups, we propose a convention for describing the spin‐dependent properties of chiral materials and apply it in the discussion. Different phenomena known to affect the sign and magnitude of the spin polarization are described and critically analyzed, including: the molecule's orientation, the molecule's dipole moment direction with respect to the electron propagation direction, the molecular length, the molecule/substrate interface, and the role of the molecule's secondary structure. Lastly, we identify open key questions about spin‐filtering by biomolecules at interfaces.

     
    more » « less
  5. Metal-binding peptides are versatile building blocks in supramolecular chemistry. We recently reported a class of crystalline materials formed through a combination of coiled-coil peptide self-association and metal coordination. Here, we probe the serendipitously discovered metal binding motif that drives the assembly and apply these insights to exert rational control over structure and morphology in the materials. 
    more » « less