skip to main content

Search for: All records

Creators/Authors contains: "Hosokawa, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Although many substorm‐related observations have been made, we still have limited insight into propagation of the plasma and field perturbations in Pi2 frequencies (∼7–25 mHz) in association with substorm aurora, particularly from the auroral source region in the inner magnetosphere to the ground. In this study, we present conjugate observations of a substorm brightening aurora using an all‐sky camera and an inner‐magnetospheric satellite Arase atL ∼ 5. A camera at Gakona (62.39°N, 214.78°E), Alaska, observed a substorm auroral brightening on 28 December 2018, and the footprint of the satellite was located just equatorward of the aurora. Around the timing of the auroral brightening, the satellite observed a series of quasi‐periodic variations in the electric and magnetic fields and in the energy flux of electrons and ions. We demonstrate that the diamagnetic variations of thermal pressure and medium‐energy ion energy flux in the inner magnetosphere show approximately one‐to‐one correspondence with the oscillations in luminosity of the substorm brightening aurora and high‐latitudinal Pi2 pulsations on the ground. We also found their anti‐correlation with low‐energy electrons. Cavity‐type Pi2 pulsations were observed at mid‐ and low‐latitudinal stations. Based on these observations, we suggest that a wave phenomenon in the substorm auroral source region, like ballooning type instability, play an important role in the development of substorm and related auroral brightening and high‐latitude Pi2, and that the variation of the auroral luminosity was directly driven by keV electrons which were modulated by Alfven waves in the inner magnetosphere.

    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    A specialized ground‐based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of (a) six 100 Hz sampling high‐speed all‐sky imagers (ASIs), (b) two 10 Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, (c) a 20 Hz sampling fluxgate magnetometer. The 100 Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10 Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20 Hz sampling magnetometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to detect the low‐altitude ionization due to energetic electron precipitation during PsA and further to reveal the ionospheric electrodynamics behind PsA. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system can be utilized not only for studies of PsA but also for other classes of aurora in close collaboration with the planned EISCAT_3D project.

    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Owing to the ever-present solar wind, our vast solar system is full of plasmas. The turbulent solar wind, together with sporadic solar eruptions, introduces various space plasma processes and phenomena in the solar atmosphere all the way to the Earth's ionosphere and atmosphere and outward to interact with the interstellar media to form the heliopause and termination shock. Remarkable progress has been made in space plasma physics in the last 65 years, mainly due to sophisticated in-situ measurements of plasmas, plasma waves, neutral particles, energetic particles, and dust via space-borne satellite instrumentation. Additionally high technology ground-based instrumentation has led to new and greater knowledge of solar and auroral features. As a result, a new branch of space physics, i.e., space weather, has emerged since many of the space physics processes have a direct or indirect influence on humankind. After briefly reviewing the major space physics discoveries before rockets and satellites, we aim to review all our updated understanding on coronal holes, solar flares and coronal mass ejections, which are central to space weather events at Earth, solar wind, storms and substorms, magnetotail and substorms, emphasizing the role of the magnetotail in substorm dynamics, radiation belts/energetic magnetospheric particles, structures and space weather dynamics in the ionosphere, plasma waves, instabilities, and wave-particle interactions, long-period geomagnetic pulsations, auroras, geomagnetically induced currents (GICs), planetary magnetospheres and solar/stellar wind interactions with comets, moons and asteroids, interplanetary discontinuities, shocks and waves, interplanetary dust, space dusty plasmas and solar energetic particles and shocks, including the heliospheric termination shock. This paper is aimed to provide a panoramic view of space physics and space weather. 
    more » « less
  4. Abstract

    This paper reports the development and detailed properties of about 13 metric tons of gadolinium sulfate octahydrate, $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$, which has been dissolved into Super-Kamiokande (SK) in the summer of 2020. We evaluate the impact of radioactive impurities in $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ on diffuse supernova neutrino background searches and solar neutrino observation and confirm the need to reduce radioactive and fluorescent impurities by about three orders of magnitude from commercially available high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$. In order to produce ultra-high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$, we have developed a method to remove impurities from gadolinium oxide, Gd2O3, consisting of acid dissolution, solvent extraction, and pH control processes, followed by a high-purity sulfation process. All of the produced ultra-high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ is assayed by inductively coupled plasma mass spectrometry and high-purity germanium detectors to evaluate its quality. Because of the long measurement time of high-purity germanium detectors, we have employed several underground laboratories for making parallel measurements including the Laboratorio Subterráneo de Canfranc in Spain, Boulby in the UK, and Kamioka in Japan. In the first half of production, the measured batch purities were found to be consistent with the specifications. However, in the latter half, the $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ contained one order of magnitude more 228Ra than the budgeted mean contamination. This was correlated with the corresponding characteristics of the raw material Gd2O3, in which an intrinsically large contamination was present. Based on their modest impact on SK physics, they were nevertheless introduced into the detector. To reduce 228Ra for the next stage of gadolinium loading to SK, a new process has been successfully established.

    more » « less
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract

    We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8–111 MeV. Supernovae will make a neutrino event cluster with the duration of ∼10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate to be 0.15 yr−1with a 90% confidence level. The detectable range, which corresponds to a >95% detection probability, is 40–59 kpc and 65–81 kpc for core-collapse supernovae and failed core-collapse supernovae, respectively. This paper proposes to convert the supernova rate obtained by the neutrino observation to the Galactic star formation rate. Assuming a modified Salpeter-type initial mass function, the upper limit on the Galactic star formation rate is <(17.5–22.7)Myr−1with a 90% confidence level.

    more » « less
  7. Abstract We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts (GRBs) from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of ±500 s plus the duration of each GRB, no statistically significant excess above the background is observed. We place the world’s most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi–Dirac neutrino energy spectrum from the GRB source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature. 
    more » « less