skip to main content


Search for: All records

Creators/Authors contains: "Hou, Thomas Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 30, 2024
  2. We provide a concise review of the exponentially convergent multiscale finite element method (ExpMsFEM) for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation. The ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions. Unlike most generalizations of the MsFEM in the literature, the ExpMsFEM does not rely on any partition of unity functions. In general, it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov n-width barrier to achieve exponential convergence. Indeed, there are online and offline parts in the function representation provided by the ExpMsFEM. The online part depends on the right-hand side locally and can be computed in parallel efficiently. The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix; they are all independent of the right-hand side, so the stiffness matrix can be used repeatedly in multi-query scenarios. 
    more » « less
  3. Whether the 3D incompressible Euler equations can develop a finite time singularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the 3D axisymmetric incompressible Euler equations with smooth initial data of finite energy develop a potential finite time singularity at the origin. This potential singularity is different from the blow-up scenario revealed by Luo and Hou (111:12968–12973, 2014) and (12:1722–1776, 2014), which occurs on the boundary. Our initial condition has a simple form and shares several attractive features of a more sophisticated initial condition constructed by Hou and Huang in (arXiv:2102.06663, 2021) and (435:133257, 2022). One important difference between these two blow-up scenarios is that the solution for our initial data has a one-scale structure instead of a two-scale structure reported in Hou and Huang (arXiv:2102.06663, 2021) and (435:133257, 2022). More importantly, the solution seems to develop nearly self-similar scaling properties that are compatible with those of the 3D Navier–Stokes equations. We will present numerical evidence that the 3D Euler equations seem to develop a potential finite time singularity. Moreover, the nearly self-similar profile seems to be very stable to the small perturbation of the initial data. 
    more » « less
  4. Whether the 3D incompressible Navier–Stokes equations can develop a finite time sin- gularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the incompress- ible axisymmetric Navier–Stokes equations with smooth initial data of finite energy seem to develop potentially singular behavior at the origin. This potentially singular behavior is induced by a potential finite time singularity of the 3D Euler equations that we reported in a companion paper published in the same issue, see also Hou (Poten- tial singularity of the 3D Euler equations in the interior domain. arXiv:2107.05870 [math.AP], 2021). We present numerical evidence that the 3D Navier–Stokes equa- tions develop nearly self-similar singular scaling properties with maximum vorticity increased by a factor of 107. We have applied several blow-up criteria to study the potentially singular behavior of the Navier–Stokes equations. The Beale–Kato–Majda blow-up criterion and the blow-up criteria based on the growth of enstrophy and neg- ative pressure seem to imply that the Navier–Stokes equations using our initial data develop a potential finite time singularity. We have also examined the Ladyzhenskaya– Prodi–Serrin regularity criteria (Kiselev and Ladyzhenskaya in Izv Akad Nauk SSSR Ser Mat 21(5):655–690, 1957; Prodi in Ann Math Pura Appl 4(48):173–182, 1959; Serrin in Arch Ration Mech Anal 9:187–191, 1962) that are based on the growth rate of Lqt Lxp norm of the velocity with 3/p + 2/q ≤ 1. Our numerical results for the cases of (p,q) = (4,8), (6,4), (9,3) and (p,q) = (∞,2) provide strong evidence for the potentially singular behavior of the Navier–Stokes equations. The critical case of (p,q) = (3,∞) is more difficult to verify numerically due to the extremely slow growth rate in the L3 norm of the velocity field and the significant contribution from the far field where we have a relatively coarse grid. Our numerical study shows that while the global L3 norm of the velocity grows very slowly, the localized version of the L 3 norm of the velocity experiences rapid dynamic growth relative to the localized L 3 norm of the initial velocity. This provides further evidence for the potentially singular behavior of the Navier–Stokes equations. 
    more » « less
  5. null (Ed.)
    Inspired by the numerical evidence of a potential 3D Euler singularity by Luo- Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of the 3D Euler equation without swirl with $C^{1,\alpha}$ initial data for the velocity, we prove the finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations in the presence of boundary with $C^{1,\alpha}$ initial data for the velocity (and density in the case of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations and the singular solution considered in [30,31] share many essential features, including the symmetry properties of the solution, the flow structure, and the sign of the solution in each quadrant, except that we use $C^{1,\alpha}$ initial data for the velocity field. We use a dynamic rescaling formulation and follow the general framework of analysis developed by Elgindi in [11]. We also use some strategy proposed in our recent joint work with Huang in [7] and adopt several methods of analysis in [11] to establish the linear and nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations with $C^{1,\alpha}$ initial data will develop a finite time singularity. Moreover, the velocity field has finite energy before the singularity time. 
    more » « less
  6. null (Ed.)
    We present a novel method of analysis and prove finite time asymptotically self- similar blowup of the De Gregorio model [13,14] for some smooth initial data on the real line with compact support. We also prove self-similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on R or $S^1$ for Holder continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self-similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations 
    more » « less