Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 23, 2025
-
To facilitate dynamic spectrum sharing, the FCC has designated certified SAS administrators to implement their own spectrum access systems (SASs) that manage the shared spectrum usage in the novel CBRS band. As a premise, different SAS servers must conduct periodic inter-SAS coordination to synchronize service states and avoid allocation conflicts. However, SAS servers may inevitably stop service for regular upgrades, crash down, or even perform maliciously that deviate from the normal routines, posing a fundamental operation security problem — the system shall be robust against these faults to guarantee secure and efficient spectrum sharing service. Unfortunately, the incumbent inter-SAS coordination mechanism, CPAS, is prone to SAS failures and does not support real-time allocation. Recent proposals that rely on blockchain smart contracts or state machine replication mechanisms to realize fault-tolerant inter-SAS coordination require all SASs to follow a unified allocation algorithm. They however face performance bottlenecks and cannot accommodate the current fact that different SASs hold their own proprietary allocation algorithms. In this work, we propose TriSAS—a novel inter-SAS coordination mechanism to facilitate secure, efficient, and dependable spectrum allocation that is fully compatible with the existing SAS infrastructure. TriSAS decomposes the coordination process into two phases including input synchronization and decision finalization. The firstphase ensures participants share a common input set while the second one fulfills a fair and verifiable spectrum allocation selec- tion, which is generated efficiently via SAS proposers’ proprietary allocation algorithms and evaluated by a customized designed allocation evaluation algorithm (AEA), in the face of no more than one-third of malicious participants. We implemented a prototype of TriSAS on the AWS cloud computing platform and evaluated its throughput and latency performance. The results show that TriSAS achieves high transaction throughput and low latency under various practical settings.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Mobile tracking has long been a privacy problem, where the geographic data and timestamps gathered by mobile network operators (MNOs) are used to track the locations and movements of mobile subscribers. Additionally, selling the geolocation information of subscribers has become a lucrative business. Many mobile carriers have violated user privacy agreements by selling users’ location history to third parties without user consent, exacerbating privacy issues related to mobile tracking and profiling. This paper presents AAKA, an anonymous authentication and key agreement scheme designed to protect against mobile tracking by honest-but-curious MNOs. AAKA leverages anonymous credentials and introduces a novel mobile authentication protocol that allows legitimate subscribers to access the network anonymously, without revealing their unique (real) IDs. It ensures the integrity of user credentials, preventing forgery, and ensures that connections made by the same user at different times cannot be linked. While the MNO alone cannot identify or profile a user, AAKA enables identification of a user under legal intervention, such as when the MNOs collaborate with an authorized law enforcement agency. Our design is compatible with the latest cellular architecture and SIM standardized by 3GPP, meeting 3GPP’s fundamental security requirements for User Equipment (UE) authentication and key agreement processes. A comprehensive security analysis demonstrates the scheme’s effectiveness. The evaluation shows that the scheme is practical, with a credential presentation generation taking∼ 52 ms on a constrained host device equipped with a standard cellular SIM.more » « lessFree, publicly-accessible full text available February 26, 2025
-
Recent studies have shown that compromising Bitcoin’s peer-to-peer network is an effective way to disrupt the Bitcoin service. While many attack vectors have been uncovered such as BGP hijacking in the network layer and eclipse attack in the application layer, one significant attack vector that resides in the transport layer is largely overlooked. In this paper, we investigate the TCP vulnerabilities of the Bitcoin system and their consequences. We present Bijack, an off-path TCP hijacking attack on the Bitcoin network that is able to terminate Bitcoin connections or inject malicious data into the connections with only a few prior requirements and a limited amount of knowledge. This results in the Bitcoin network topology leakage, and the Bitcoin nodes isolation.more » « lessFree, publicly-accessible full text available January 12, 2025
-
Free, publicly-accessible full text available October 30, 2024
-
Free, publicly-accessible full text available September 25, 2024
-
Free, publicly-accessible full text available September 25, 2024
-
Telephone users are receiving more and more unwanted calls including spam and scam calls because of the transfer-without-verification nature of global telephone networks, which allows anyone to call any other numbers. To avoid unwanted calls, telephone users often ignore or block all incoming calls from unknown numbers, resulting in the missing of legitimate calls from new callers. This paper takes an end-to-end perspective to present a solution to block unwanted calls while allowing users to define the policies of acceptable calls. The proposed solution involves a new infrastructure based on anonymous credentials, which enables anonymous caller authentication and policy definition. Our design decouples caller authentication and call session initiation and introduces a verification code to interface and bind the two processes. This design minimizes changes to telephone networks, reduces latency to call initiation, and eliminates the need for a call-time data channel. A prototype of the system is implemented to evaluate its feasibility.more » « less
-
With the proliferation of autonomous safety-critical cyber-physical systems (CPS) in our daily life, their security is becoming ever more important. Remote attestation is a powerful mechanism to enable remote verification of system integrity. While recent developments have made it possible to efficiently attest IoT operations, autonomous systems that are built on top of real-time cyber-physical control loops and execute missions independently present new unique challenges. In this paper, we formulate a new security property, Realtime Mission Execution Integrity (RMEI) to provide proof of correct and timely execution of the missions. While it is an attractive property, measuring it can incur prohibitive overhead for the real-time autonomous system. To tackle this challenge, we propose policy-based attestation of compartments to enable a trade-off between the level of details in measurement and runtime overhead. To further minimize the impact on real-time responsiveness, multiple techniques were developed to improve the performance, including customized software instrumentation and timing recovery through re-execution. We implemented a prototype of ARI and evaluated its performance on five CPS platforms. A user study involving 21 developers with different skill sets was conducted to understand the usability of our solution.more » « less