skip to main content

Search for: All records

Creators/Authors contains: "Hounshell, Alexandria G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Globally significant quantities of carbon (C), nitrogen (N), and phosphorus (P) enter freshwater reservoirs each year. These inputs can be buried in sediments, respired, taken up by organisms, emitted to the atmosphere, or exported downstream. While much is known about reservoir-scale biogeochemical processing, less is known about spatial and temporal variability of biogeochemistry within a reservoir along the continuum from inflowing streams to the dam. To address this gap, we examined longitudinal variability in surface water biogeochemistry (C, N, and P) in two small reservoirs throughout a thermally stratified season. We sampled total and dissolved fractions of C, N, and P, as well as chlorophyll-a from each reservoir’s major inflows to the dam. We found that heterogeneity in biogeochemical concentrations was greater over time than space. However, dissolved nutrient and organic carbon concentrations had high site-to-site variability within both reservoirs, potentially as a result of shifting biological activity or environmental conditions. When considering spatially explicit processing, we found that certain locations within the reservoir, most often the stream–reservoir interface, acted as “hotspots” of change in biogeochemical concentrations. Our study suggests that spatially explicit metrics of biogeochemical processing could help constrain the role of reservoirs in C, N, and Pmore »cycles in the landscape. Ultimately, our results highlight that biogeochemical heterogeneity in small reservoirs may be more variable over time than space, and that some sites within reservoirs play critically important roles in whole-ecosystem biogeochemical processing.« less
    Free, publicly-accessible full text available April 1, 2024
  2. Free, publicly-accessible full text available November 1, 2023
  3. Abstract Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.
  4. Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the firstmore »documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula.« less
  5. Abstract

    Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near‐continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2(633–731 g CO2‐C m−2 yr−1) and CH4(1.02–1.29 g CH4‐C m−2 yr−1) to the atmosphere, with substantial sub‐daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice‐on conditions as compared to continuous ice‐on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice‐cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followedmore »by fluorescent dissolved organic matter. Overall, our novel year‐round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2and CH4to global GHG budgets, relative to their surface area.

    « less
  6. Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses inmore »OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future.« less
  7. Abstract

    Lakes and reservoirs globally produce large quantities of methane and carbon dioxide in their sediments, which accumulate in the hypolimnia (bottom waters) during thermally stratified conditions. A key parameter controlling hypolimnetic greenhouse gas concentrations is dissolved oxygen. Land use and climate change have increased hypolimnetic anoxia worldwide in lakes and reservoirs, which is expected to affect their methane and carbon dioxide concentrations. We conducted whole‐ecosystem oxygenation experiments to assess the effects of oxygen concentrations on dissolved hypolimnetic greenhouse gas concentrations in comparison to a reference reservoir and calculated the maximum hypolimnetic global warming potential in both reservoirs over three summers. We observed significantly greater hypolimnetic methane under anoxic conditions but similar carbon dioxide concentrations, leading to greater hypolimnetic global warming potential of anoxic hypolimnia. Our study indicates that the global warming potential of hypolimnetic greenhouse gas concentrations may increase as the prevalence of hypolimnetic anoxia increases due to global change.

  8. Abstract

    Simulation models are increasingly used by ecologists to study complex, ecosystem‐scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis‐driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands‐on modeling activities in the classroom affects student learning. Here, we developed short (3‐hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data‐Driven Inquiry & Exploration) program that engage students with hands‐on ecosystem modeling in the R statistical environment. We embedded the modules into in‐person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self‐reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their “ease of use” after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinkingmore »in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands‐on ecosystem modeling activities may increase students’ awareness of how individual components interact to affect system‐level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in‐person, hybrid, or virtual modes of instruction.

    « less