skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Houston, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Formalin‐fixed tissues provide the medical and forensic communities with alternative and often last resort sources of DNA for identification or diagnostic purposes. The DNA in these samples can be highly degraded and chemically damaged, making downstream genotyping using short tandem repeats (STRs) challenging. Therefore, the use of alternative genetic markers, methods that pre‐amplify the low amount of good quality DNA present, or methods that repair the damaged DNA template may provide more probative genetic information. This study investigated whether whole genome amplification (WGA) and DNA repair could improve STR typing of formaldehyde‐damaged (FD) tissues from embalmed cadavers. Additionally, comparative genotyping success using bi‐allelic markers, including INDELs and SNPs, was explored. Calculated random match probabilities (RMPs) using traditional STRs, INDEL markers, and two next generation sequencing (NGS) panels were compared across all samples. Overall, results showed that neither WGA nor DNA repair substantially improved STR success rates from formalin‐fixed tissue samples. However, when DNA from FD samples was genotyped using INDEL and SNP‐based panels, the RMP of each sample was markedly lower than the RMPs calculated from partial STR profiles. Therefore, the results of this study suggest that rather than attempting to improve the quantity and quality of severely damaged and degraded DNA prior to STR typing, a more productive approach may be to target smaller amplicons to provide more discriminatory DNA identifications. Furthermore, an NGS panel with less loci may yield better results when examining FD samples, due to more optimized chemistries that result in greater allelic balance and amplicon coverage. 
    more » « less