Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Extreme precision radial velocity (EPRV) measurements contend with internal noise (instrumental systematics) and external noise (intrinsic stellar variability) on the road to 10 cm s−1“exo-Earth” sensitivity. Both of these noise sources are well-probed using “Sun-as-a-star” RVs and cross-instrument comparisons. We built the Solar Calibrator (SoCal), an autonomous system that feeds stable, disk-integrated sunlight to the recently commissioned Keck Planet Finder (KPF) at the W. M. Keck Observatory. With SoCal, KPF acquires signal-to-noise ratio (S/N) ∼ 1200,R= 98,000 optical (445–870 nm) spectra of the Sun in 5 s exposures at unprecedented cadence for an EPRV facility using KPF’s fast readout mode (<16 s between exposures). Daily autonomous operation is achieved by defining an operations loop using state machine logic. Data affected by clouds are automatically flagged using a reliable quality control metric derived from simultaneous irradiance measurements. Comparing solar data across the growing global network of EPRV spectrographs with solar feeds will allow EPRV teams to disentangle internal and external noise sources and benchmark spectrograph performance. To facilitate this, all SoCal data products are immediately available to the public on the Keck Observatory Archive. We compared SoCal RVs to contemporaneous RVs from NEID, the only other immediately public EPRV solar data set. We find agreement at the 30–40 cm s−1level on timescales of several hours, which is comparable to the combined photon-limited precision. Data from SoCal were also used to assess a detector problem and wavelength calibration inaccuracies associated with KPF during early operations. Long-term SoCal operations will collect upwards of 1000 solar spectra per six-hour day using KPF’s fast readout mode, enabling stellar activity studies at high S/N on our nearest solar-type star.more » « less
-
Abstract The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on decorrelation using an activity indicator (e.g., strength of the Ca ii lines, width of the cross-correlation function, broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity indicator, the depth metric ( t ) , from the most activity-sensitive spectral lines using the “line-by-line” method of Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of activity indices, time series modeling of ( t ) reduces the amplitude of magnetic activity in RV measurements; in an α CenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s −1 . ( t ) modeling enabled us to characterize injected planetary signals as small as 1 m s −1 . In terms of noise reduction and injected signal recovery, ( t ) modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For Sun-like stars with activity signals on the m s −1 level, the depth metric independently tracks rotationally modulated and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and log R HK ′ . The depth metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a means of connecting stellar activity to physical processes within host stars.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)As part of the Keck Planet Finder (KPF) project, a Fiber Injection Unit (FIU) was implemented and will be deployed on the Keck Ⅰ telescope, with the aim of providing dispersion compensated and tip/tilt corrected light to the KPF instrument and accompanying H&K spectrometer. The goal of KPF is to characterize exoplanets via the radial velocity technique, with a single measurement precision of 30cm/s or better. To accomplish this, the FIU must provide a stable F-number and chief ray angle to the Science and Calcium H&K fibers. Our design approach was use a planar optical layout with atmospheric dispersion compensation for both the Science and Calcium H&K arms. A SWIR guider camera and piezo tip/tilt mirror are used to keep the target centered on the fibers.more » « less
-
Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars.more » « less
-
Abstract Highly eccentric orbits are one of the major surprises of exoplanets relative to the solar system and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in the semimajor axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system’s origins and architecture. We confirm a second planet in the system withMc= 0.40 ± 0.09Mjupand Pc= 1919 ± 27 days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent eccentric Kozai–Lidov perturbations that excite Kepler-1656b’s eccentricity gently, i.e., without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearly perpendicular configuration with respect to the inner planet orbit based on the outcomes of our simulations and make observable predictions for the inner planet’s spin–orbit angle. Our methodology can be applied to other eccentric or tidally locked planets to constrain their origins, orbital configurations, and properties of a potential companion.more » « less
-
Abstract We use a high-precision radial velocity survey of FGKM stars to study the conditional occurrence of two classes of planets: close-in small planets (0.023–1 au, 2–30 M ⊕ ) and distant giant planets (0.23–10 au, 30–6000 M ⊕ ). We find that 41 − 13 + 15 % of systems with a close-in, small planet also host an outer giant, compared to 17.6 − 1.9 + 2.4 % for stars irrespective of small planet presence. This implies that small planet hosts may be enhanced in outer giant occurrences compared to all stars with 1.7 σ significance. Conversely, we estimate that 42 − 13 + 17 % of cold giant hosts also host an inner small planet, compared to 27.6 − 4.8 + 5.8 % of stars irrespective of cold giant presence. We also find that more massive and close-in giant planets are not associated with small inner planets. Specifically, our sample indicates that small planets are less likely to have outer giant companions more massive than approximately 120 M ⊕ and within 0.3–3 au, than to have less massive or more distant giant companions, with ∼2.2 σ confidence. This implies that massive gas giants within 0.3–3 au may suppress inner small planet formation. Additionally, we compare the host-star metallicity distributions for systems with only small planets and those with both small planets and cold giants. In agreement with previous studies, we find that stars in our survey that only host small planets have a metallicity distribution that is consistent with the broader solar-metallicity-median sample, while stars that host both small planets and gas giants are distinctly metal rich with ∼2.3 σ confidence.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)We present a compact, double-pass cross-dispersed echelle spectrograph that is tailored specifically to cover the 383 nm to 403 nm spectral range and record R∼16,000 spectra of the stellar chromospheric Ca II H and K lines. This `H and K' spectrometer was developed as a subsystem of the Keck Planet Finder (KPF), which is an extremely precise optical (440 - 870 nm) radial velocity spectrograph for Keck I, scheduled for commissioning Fall 2022, with the science objective of measuring precise masses of exoplanets. The H and K spectrometer will observe simultaneously with KPF to independently track the chromospheric activity of the host stars that KPF observes, which is expected to dominate the KPF measurement floor over long timescales. The H and K Spectrometer is fiber fed from the KPF fiber injection unit with total throughput of 4-7% (top of telescope to CCD) over its operating spectral range. Here we detail the optical design trade offs, mechanical design, and first results from alignment and integration testing.more » « less
-
Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)Optical SETI (Search for Extraterrestrial Intelligence) instruments that can explore the very fast time domain, especially with large sky coverage, offer an opportunity for new discoveries that can complement multimessenger and time domain astrophysics. The Panoramic SETI experiment (PANOSETI) aims to observe optical transients with nanosecond to second duration over a wide field-of-view (∼2,500 sq.deg.) by using two assemblies of tens of telescopes to reject spurious signals by coincidence detection. Three PANOSETI telescopes, connected to a White Rabbit timing network used to synchronize clocks at the nanosecond level, have been deployed at Lick Observatory on two sites separated by a distance of 677 meters to distinguish nearby light sources (such as Cherenkov light from particle showers in the Earth’s atmosphere) from astrophysical sources at large distances. In parallel to this deployment, we present results obtained during four nights of simultaneous observations with the four 12-meter VERITAS gamma-ray telescopes and two PANOSETI telescopes at the Fred Lawrence Whipple Observatory. We report PANOSETI’s first detection of astrophysical gamma rays, comprising three events with energies in the range between ∼15 TeV and ∼50 TeV. These were emitted by the Crab Nebula, and identified as gamma rays using joint VERITAS observations.more » « less