Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2024. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2024, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, and after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. The EXO2 was redeployed on the buoy in 2024. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less
-
Discharge rates at multiple inflow streams into Falling Creek Reservoir (Vinton, Virginia, USA), Beaverdam Reservoir (Vinton, Virginia, USA), Carvins Cove Reservoir (Roanoke, Virginia, USA), and one outflow at Falling Creek Reservoir were measured manually using multiple methods from 2019-2024. Falling Creek Reservoir, Beaverdam Reservoir, and Carvins Cove Reservoir are owned and operated by the Western Virginia Water Authority as drinking water sources for Roanoke, Virginia. The dataset consists of discharge rates calculated using one of four methods: handheld flowmeter, salt injection, velocity float, or bucket method. Data were collected weekly to monthly from February through October 2019 at Falling Creek and Beaverdam Reservoir, and approximately monthly to seasonally at Falling Creek and Carvins Cove from 2020-2024.more » « less
-
Discharge rates at multiple inflow streams into Falling Creek Reservoir (Vinton, Virginia, USA), Beaverdam Reservoir (Vinton, Virginia, USA), and Carvins Cove Reservoir (Roanoke, Virginia, USA) were measured manually using multiple methods from 2019-2023. Falling Creek Reservoir, Beaverdam Reservoir, and Carvins Cove Reservoir are owned and operated by the Western Virginia Water Authority as drinking water sources for Roanoke, Virginia. The dataset consists of discharge rates calculated using one of four methods: handheld flowmate, salt injection, velocity float, or bucket method. Data were collected weekly to monthly from February through October 2019 at Falling Creek and Beaverdam Reservoir, approximately monthly at Falling Creek in 2020-2022, approximately monthly at Carvins Cove in 2021-2022, and approximately seasonally in 2023 at Falling Creek and Carvins Cove.more » « less
-
We monitored water quality in Carvins Cove Reservoir (Roanoke, Virginia, USA) with high-frequency (10-minute) sensors in 2020-2023. Carvins Cove Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source. This data package consists of datasets from two separate deployments. First, from July 2020 - August 2021, depth profiles of water temperature were measured on 1-meter intervals using HOBO temperature pendant loggers deployed from 0.1 m below the surface of the reservoir to 10 m depth, and also at 15 and 20 m depth. Additionally, water temperature was measured in the Sawmill Branch inflow at 0.5 m depth using HOBO temperature pendant loggers. Second, from 9 April 2021 - 31 December 2023, depth profiles of water temperature were measured on 1-meter intervals from 0.1 m below the surface of the reservoir to 11 m depth and additionally at 15 and 19 m. A YSI EXO2 sonde measured water temperature, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at ~1.5 m depth. A YSI EXO3 sonde measured water temperature, conductivity, specific conductance, total dissolved solids, dissolved oxygen, and fluorescent dissolved organic matter at 9 m depth, which corresponds to the depth of a water outtake valve. The thermistors, EXO3 sonde, and pressure sensor were deployed at stationary, fixed elevations (referred to as positions) deployed off of the dam near the water outtake valves. Due to variable water levels in the reservoir, the depths of these sensors varied over time. In contrast, the EXO2 was deployed on a buoy from 2021-2022 and remained at 1.5 m depth as the water level fluctuated. However, in 2023, the buoy disappeared in a storm, after that the EOX2 was deployed at a stationary elevation as the water level fluctuated around the sensor. At the monitoring site, the reservoir is approximately 19 m deep (reservoir maximum depth is 23 m).more » « less
-
Time series of high-frequency meteorological data at Carvins Cove Reservoir, Virginia, USA 2021-2023This dataset consists of variables measured by a research-grade Campbell Scientific meteorological station deployed on the dam of Carvins Cove Reservoir. Carvins Cove Reservoir (Roanoke, Virginia, USA, 37.36944, -79.95778), is owned and operated by the Western Virginia Water Authority as a primary water source. The meteorological variables include photosynthetic active radiation, barometric pressure, ambient air temperature, relative humidity, rainfall, wind speed and direction, shortwave radiation, infrared radiation, and albedo. All variables were measured every minute from 2021-03-29 19:00:00 (YYYY-MM-DD HH:MM:SS) to the end of the dataset at 2023-12-31 23:59:00. We applied quality assurance/quality control protocols to the raw observations, as described in the methods.more » « less
-
Depth profiles of dissolved organic and inorganic carbon and total and dissolved nitrogen and phosphorus were sampled from 2013-2023 in five drinking water reservoirs in southwestern Virginia, USA. The five drinking water reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of water chemistry samples measured at the deepest site of each reservoir adjacent to the dam. Additional water chemistry samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, as well as surface samples at multiple upstream and inflow sites in Falling Creek Reservoir 2014-2023 and Beaverdam Reservoir in 2019 and 2020. One upstream site at Beaverdam Reservoir was sampled at depth in 2022. Inflow sites at Carvins Cove Reservoir were sampled from 2020-2023. The water column samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly from November-February at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, and approximately fortnightly from 2014-2016 in Gatewood and Spring Hollow Reservoirs, though sampling frequency and duration varied among reservoirs and years.more » « less
-
Working with ecological data often involves ethical considerations, particularly when data are applied to address societal needs. However, data science ethics are rarely included as part of undergraduate and graduate training programs. Here, we present four modules for teaching ethics in data science, with real-world case studies related to ecological forecasting.more » « less
-
Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.more » « less
-
Depth profiles of dissolved organic carbon and total and dissolved nitrogen and phosphorus were sampled from 2013 to 2022 in five drinking water reservoirs in southwestern Virginia, USA. Some additional dissolved nitrogen and phosphorus samples from January to March 2023 are included in this data product. The five drinking water reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of water chemistry samples measured at the deepest site of each reservoir adjacent to the dam. Additional water chemistry samples were collected at a gauged weir on Falling Creek Reservoir's primary inflow tributary, as well as surface samples at multiple upstream and inflow sites in Falling Creek Reservoir 2014-2022 and Beaverdam Reservoir in 2019 and 2020. One upstream site at BVR was sampled at depth in 2022. Inflow sites at Carvins Cove Reservoir were sampled from 2020 - 2022. The water column samples were collected approximately fortnightly from March-April, weekly from May-October, and monthly from November-February at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, and approximately fortnightly from 2014-2016 in Gatewood and Spring Hollow Reservoirs, though sampling frequency and duration varied among reservoirs and years. Depth profiles of dissolved inorganic carbon were also collected from 2018-2022, but the analytical method for this analyte is still in development and these concentrations should be considered as preliminary data only.more » « less
-
LakeBeD-US: Ecology Edition is a harmonized lake water quality dataset containing time series and vertical profiles of 21 lakes in the United States monitored by long-term monitoring institutions. These institutions include the North Temperate Lakes Long-Term Ecological Research program (NTL-LTER), Niwot Ridge Long-Term Ecological Research program (NWT-LTER), National Ecological Observatory Network (NEON), and the Carey Lab at Virginia Tech as part of the Virginia Reservoirs Long-Term Research in Environmental Biology (LTREB) site in collaboration with the Western Virginia Water Authority. The data include depth-discrete observations of 17 water quality variables including temperature, dissolved oxygen, chemical properties, Secchi depth, and more. Observations are divided into data collected by automated sensors at a relatively high temporal frequency and manually sampled data at a relatively low temporal frequency. All data were collected in situ. The data are available as Apache Parquet files, and the included R scripts give guidance on how to utilize and query the dataset in R. LakeBeD-US: Ecology Edition is an ecological science-oriented companion to LakeBeD-US: Computer Science Edition. The Computer Science Edition is available on the Hugging Face Hub.more » « less