skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Howard, Jessica N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In many scientific fields which rely on statistical inference, simulations are often used to map from theoretical models to experimental data, allowing scientists to test model predictions against experimental results. Experimental data is often reconstructed from indirect measurements causing the aggregate transformation from theoretical models to experimental data to be poorly-described analytically. Instead, numerical simulations are used at great computational cost. We introduce Optimal-Transport-based Unfolding and Simulation (OTUS), a fast simulator based on unsupervised machine-learning that is capable of predicting experimental data from theoretical models. Without the aid of current simulation information, OTUS trains a probabilistic autoencoder to transform directly between theoretical models and experimental data. Identifying the probabilistic autoencoder’s latent space with the space of theoretical models causes the decoder network to become a fast, predictive simulator with the potential to replace current, computationally-costly simulators. Here, we provide proof-of-principle results on two particle physics examples, Z -boson and top-quark decays, but stress that OTUS can be widely applied to other fields. 
    more » « less
  2. A bstract We explore the possibility that dark matter is a pair of vector-like fermionic SU(2) L doublets and propose a novel mechanism of dark matter production that proceeds through the confinement of the weak sector of the Standard Model. This confinement phase causes the Standard Model doublets and dark matter to confine into pions. The dark pions freeze-out before the weak sector deconfines and generate a relic abundance of dark matter. We solve the Boltzmann equations for this scenario to determine the scale of confinement and constituent dark matter mass required to produce the observed relic density. We determine which regions of this parameter space evade direct detection, collider bounds, and successfully produce the observed relic density of dark matter. For a TeV scale pair of vector-like fermionic SU(2) L doublets, we find the weak confinement scale to be ∼ 700 TeV. 
    more » « less
  3. First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem. 
    more » « less