Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract New mass-produced, wide-field, small-aperture telescopes have the potential to revolutionize ground-based astronomy by greatly reducing the cost of collecting area. In this paper, we introduce a new class of large telescope based on these advances: an all-sky, arcsecond-resolution, 1000 telescope array which builds a simultaneously high-cadence and deep survey by observing the entire sky all night. As a concrete example, we describe the Argus Array, a 5 m-class telescope with an all-sky field of view and the ability to reach extremely high cadences using low-noise CMOS detectors. Each 55 GPix Argus exposure covers 20% of the entire sky to m g = 19.6 each minute and m g = 21.9 each hour; a high-speed mode will allow sub-second survey cadences for short times. Deep coadds will reach m g = 23.6 every five nights over 47% of the sky; a larger-aperture array telescope, with an étendue close to the Rubin Observatory, could reach m g = 24.3 in five nights. These arrays can build two-color, million-epoch movies of the sky, enabling sensitive and rapid searches for high-speed transients, fast-radio-burst counterparts, gravitational-wave counterparts, exoplanet microlensing events, occultations by distant solar system bodies, and myriad other phenomena. An array of O(1000)more »