skip to main content

Search for: All records

Creators/Authors contains: "Howell, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the results from the first two years of the Planet Hunters TESS citizen science project, which identifies planet candidates in the TESS data by engaging members of the general public. Over 22,000 citizen scientists from around the world visually inspected the first 26 Sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 % of the TOIs with radii greater than 4 ⊕ and 51 % of those with radii between 3 and 4 R⊕. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.
  2. Free, publicly-accessible full text available December 3, 2022
  3. Abstract SN 2017jgh is a type IIb supernova discovered by Pan-STARRS during the C16/C17 campaigns of the Kepler/K2 mission. Here we present the Kepler/K2 and ground based observations of SN 2017jgh, which captured the shock cooling of the progenitor shock breakout with an unprecedented cadence. This event presents a unique opportunity to investigate the progenitors of stripped envelope supernovae. By fitting analytical models to the SN 2017jgh lightcurve, we find that the progenitor of SN 2017jgh was likely a yellow supergiant with an envelope radius of ∼50 − 290 R⊙, and an envelope mass of ∼0 − 1.7 M⊙. SN 2017jgh likely had a shock velocity of ∼7500 − 10300 km s−1. Additionally, we use the lightcurve of SN 2017jgh to investigate how early observations of the rise contribute to constraints on progenitor models. Fitting just the ground based observations, we find an envelope radius of ∼50 − 330 R⊙, an envelope mass of ∼0.3 − 1.7 M⊙ and a shock velocity of ∼9, 000 − 15, 000 km s−1. Without the rise, the explosion time can not be well constrained which leads to a systematic offset in the velocity parameter and larger uncertainties in the mass and radius. Therefore, it is likely that progenitor property estimates throughmore »these models may have larger systematic uncertainties than previously calculated.« less
  4. We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m b = 30.8 ± 1.5 M ⊕ , R b = 4.7 ± 0.3 R ⊕ ) located in the “hot Neptune desert”. Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer , and ground-based photometry from MuSCAT2, TRAPPIST-South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TÜBİTAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf ( T eff = 3950 ± 51 K) with a mass of 0.59 ± 0.02 M ⊙ and a radius of 0.58 ± 0.02 R ⊙ . From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33more »d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained.« less