skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Howell, William J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing adoption of electric vehicles (EVs) by the general population creates an opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in their households and ultimately in their neighborhood grid during surging demand. However, the impact of the adoption rate in a neighborhood might be counterbalanced by the energy demand of EVs during off-peak hours. Therefore, achieving optimal peak energy shaving is a product of a sensitive balancing process that depends on the EV adoption rate. In this paper, we propose EOS, an agent-based simulation model, to represent independent household energy usage and estimate the real-time neighborhood energy consumption and peak shaving energy amount of a neighborhood. This study uses Residential Energy Consumption Survey (RECS) and the American Time Use Survey (ATUS) data to model realistic real-time household energy use. We evaluate the impact of the EV adoption rates of a neighborhood on performing energy peak shaving during sudden energy surges. Our findings reveal these trade-offs and, specifically, a reduction of up to 30% of the peak neighborhood energy usage for the optimal neighborhood EV adoption rate in a 1089 household neighborhood. 
    more » « less