skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hsiao, E. Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$^{+1}_{-1}$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $60 \, 000^{+3}_{-3}$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs.

     
    more » « less
  2. Abstract

    We present the second and final release of optical spectroscopy of Type Ia supernovae (SNe Ia) obtained during the first and second phases of the Carnegie Supernova Project (CSP-I and CSP-II). The newly released data consist of 148 spectra of 30 SNe Ia observed in the course of CSP-I and 234 spectra of 127 SNe Ia obtained during CSP-II. We also present 216 optical spectra of 46 historical SNe Ia, including 53 spectra of 30 SNe Ia observed by the Calán/Tololo Supernova Survey. We combine these observations with previously published CSP data and publicly available spectra to compile a large sample of measurements of spectroscopic parameters at maximum light, consisting of pseudo-equivalent widths and expansion velocities of selected features for 232 CSP and historical SNe Ia (including more than 1000 spectra). Finally, we review some of the strongest correlations between spectroscopic and photometric properties of SNe Ia. Specifically, we define two samples: one consisting of SNe Ia discovered by targeted searches (most of them CSP-I objects) and the other composed of SNe Ia discovered by untargeted searches, which includes most of the CSP-II objects. The analyzed correlations are similar for both samples. We find a larger incidence of SNe Ia belonging to the cool and broad-line Branch subtypes among the events discovered by targeted searches, shallow-silicon SNe Ia are present with similar frequencies in both samples, while core normal SNe Ia are more frequent in untargeted searches.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Type II supernovae (SNe II) show great photometric and spectroscopic diversity which is attributed to the varied physical characteristics of their progenitor and explosion properties. In this study, the third of a series of papers where we analyse a large sample of SNe II observed by the Carnegie Supernova Project-I, we present correlations between their observed and physical properties. Our analysis shows that explosion energy is the physical property that correlates with the highest number of parameters. We recover previously suggested relationships between the hydrogen-rich envelope mass and the plateau duration, and find that more luminous SNe II with higher expansion velocities, faster declining light curves, and higher 56 Ni masses are consistent with higher energy explosions. In addition, faster declining SNe II (usually called SNe IIL) are also compatible with more concentrated 56 Ni in the inner regions of the ejecta. Positive trends are found between the initial mass, explosion energy, and 56 Ni mass. While the explosion energy spans the full range explored with our models, the initial mass generally arises from a relatively narrow range. Observable properties were measured from our grid of bolometric LC and photospheric velocity models to determine the effect of each physical parameter on the observed SN II diversity. We argue that explosion energy is the physical parameter causing the greatest impact on SN II diversity, that is, assuming the non-rotating solar-metallicity single-star evolution as in the models used in this study. The inclusion of pre-SN models assuming higher mass loss produces a significant increase in the strength of some correlations, particularly those between the progenitor hydrogen-rich envelope mass and the plateau and optically thick phase durations. These differences clearly show the impact of having different treatments of stellar evolution, implying that changes in the assumption of standard single-star evolution are necessary for a complete understanding of SN II diversity. 
    more » « less
  4. null (Ed.)
  5. Abstract We present and analyze a near-infrared (NIR) spectrum of the underluminous Type Ia supernova SN 2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory, 191 days after B -band maximum. The spectrum is dominated by a number of broad emission features, including the [Fe ii ] at 1.644 μ m, which is highly asymmetric with a tilted top and a peak redshifted by ≈2000 km s −1 . In comparison with 2D non-LTE synthetic spectra computed from 3D simulations of off-center delayed-detonation Chandrasekhar-mass ( M ch ) white dwarf (WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitor’s envelope. We find that the size and tilt of the [Fe ii ] 1.644 μ m profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ∼4 × 10 9 g cm −3 . We also tentatively identify a stable Ni feature around 1.9 μ m characterized by a “pot-belly” profile that is slightly offset with respect to the kinematic center. In the case of SN 2020qxp/ASASSN-20jq, we estimate that the location of the DDT is ∼0.3 M WD off center, which gives rise to an asymmetric distribution of the underlying ejecta. We also demonstrate that low-luminosity and high-density WD SN Ia progenitors exhibit a very strong overlap of Ca and 56 Ni in physical space. This results in the formation of a prevalent [Ca ii ] 0.73 μ m emission feature that is sensitive to asymmetry effects. Our findings are discussed within the context of alternative scenarios, including off-center C/O detonations in He-triggered sub- M Ch WDs and the direct collision of two WDs. Snapshot programs with Gemini/Keck/Very Large Telescope (VLT)/ELT-class instruments and our spectropolarimetry program are complementary to mid-IR spectra by the James Webb Space Telescope (JWST). 
    more » « less
  6. ABSTRACT

    The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.

     
    more » « less
  7. ABSTRACT

    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.

     
    more » « less
  8. Abstract

    1991T-like supernovae are the luminous, slow-declining extreme of the Branch shallow-silicon (SS) subclass of Type Ia supernovae. They are distinguished by extremely weak CaiiH & K and Siiiλ6355 and strong Feiiiabsorption features in their optical spectra at pre-maximum phases, and have long been suspected to be over-luminous compared to normal Type Ia supernovae. In this paper, the pseudo-equivalent width of the Siiiλ6355 absorption obtained at light curve phases from ≤ +10 days is combined with the morphology of thei-band light curve to identify a sample of 1991T-like supernovae in the Carnegie Supernova Project II. Hubble diagram residuals show that, at optical as well as near-infrared wavelengths, these events are over-luminous by ∼0.1–0.5 mag with respect to the less extreme Branch SS (1999aa-like) and Branch core-normal supernovae with similarB-band light-curve decline rates.

     
    more » « less
  9. ABSTRACT

    We present detailed investigation of a specific i-band light-curve feature in Type Ia supernovae (SNe Ia) using the rapid cadence and high signal-to-noise ratio light curves obtained by the Carnegie Supernova Project. The feature is present in most SNe Ia and emerges a few days after the i-band maximum. It is an abrupt change in curvature in the light curve over a few days and appears as a flattening in mild cases and a strong downward concave shape, or a ‘kink’, in the most extreme cases. We computed the second derivatives of Gaussian Process interpolations to study 54 rapid-cadence light curves. From the second derivatives we measure: (1) the timing of the feature in days relative to i-band maximum; tdm2(i) and (2) the strength and direction of the concavity in mag d−2; dm2(i). 76 per cent of the SNe Ia show a negative dm2(i), representing a downward concavity – either a mild flattening or a strong ‘kink’. The tdm2(i) parameter is shown to correlate with the colour-stretch parameter sBV, a SN Ia primary parameter. The dm2(i) parameter shows no correlation with sBV and therefore provides independent information. It is also largely independent of the spectroscopic and environmental properties. Dividing the sample based on the strength of the light-curve feature as measured by dm2(i), SNe Ia with strong features have a Hubble diagram dispersion of 0.107 mag, 0.075 mag smaller than the group with weak features. Although larger samples should be obtained to test this result, it potentially offers a new method for improving SN Ia distance determinations without shifting to more costly near-infrared or spectroscopic observations.

     
    more » « less