skip to main content

Search for: All records

Creators/Authors contains: "Hu, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. null (Ed.)
    Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe 1− x Ga x alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x  = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe 1− x Ga x alloy to gallium compositions as high as x  = 30% and inmore »so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1− x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10 −5  s m −1 . When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.« less
    Free, publicly-accessible full text available December 1, 2022
  3. Abstract We introduce a novel paraphrastic augmentation strategy based on sentence-level lexically constrained paraphrasing and discriminative span alignment. Our approach allows for the large-scale expansion of existing datasets or the rapid creation of new datasets using a small, manually produced seed corpus. We demonstrate our approach with experiments on the Berkeley FrameNet Project, a large-scale language understanding effort spanning more than two decades of human labor. With four days of training data collection for a span alignment model and one day of parallel compute, we automatically generate and release to the community 495,300 unique (Frame,Trigger) pairs in diverse sentential contexts,more »a roughly 50-fold expansion atop FrameNet v1.7. The resulting dataset is intrinsically and extrinsically evaluated in detail, showing positive results on a downstream task.« less
  4. Abstract Spin-valley locking in monolayer transition metal dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a Dirac semimetal BaMnSb 2 . This is revealed by comprehensive studies using first principles calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy measurements. Moreover, this material also exhibits a stacked quantum Hall effect (QHE). The spin-valley degeneracy extracted from the QHE is close to 2. This result, together with the Landau level spin splitting, further confirms the spin-valley lockingmore »picture. In the extreme quantum limit, we also observed a plateau in the z -axis resistance, suggestive of a two-dimensional chiral surface state present in the quantum Hall state. These findings establish BaMnSb 2 as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.« less
    Free, publicly-accessible full text available December 1, 2022
  5. Analog/RF performance locking techniques insert configurable components to obfuscate the biasing or the design parameters of the secured analog block. The locked circuit meets the specifications only under a specific configuration decided by the correct common key, shared by all chip instances of the same design. Key provisioning enables the design of distinct user keys for individual chip instances. This area has received little research attention, and a naive approach yields large area overhead when increasing the key size. We propose a new approach based on a Schmitt trigger (ST) circuit with configurable hysteresis. The proposed key provisioning is compatiblemore »with existing analog locking techniques and has a constant area overhead regardless of key size. This approach is tested with three analog/RF circuits to demonstrate its area scalability and effectiveness on security.« less
  6. Abstract Detailed crystallographic characterization of a tri-aspartate metal-binding site previously identified on the three-fold symmetry axis of a hexameric enzyme, LarE from Lactobacillus plantarum, was conducted. By screening an array of monovalent, divalent, and trivalent metal ions, we demonstrated that this metal binding site stoichiometrically binds Ca2+, Mn2+, Fe2+/Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+, but not monovalent metal ions, Cr3+, Mg2+, Y3+, Sr2+ or Ba2+. Extensive database searches resulted in only 13 similar metal binding sites in other proteins, indicative of the rareness of tri-aspartate architectures, which allows for engineering such a selective multivalent metal ion binding site intomore »target macromolecules for structural and biophysical characterization.« less
  7. Abstract Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D 0 D 0 π + mass spectrum just below the D *+ D 0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalarmore »$${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + tetraquark with a quark content of $${{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}\overline{{{{{{\rm{u}}}}}}}\overline{{{{{{\rm{d}}}}}}}$$ c c u ¯ d ¯ and spin-parity quantum numbers J P  = 1 + . Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D *+ mesons is consistent with the observed D 0 π + mass distribution. To analyse the mass of the resonance and its coupling to the D * D system, a dedicated model is developed under the assumption of an isoscalar axial-vector $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state decaying to the D * D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state. In addition, an unexpected dependence of the production rate on track multiplicity is observed.« less
    Free, publicly-accessible full text available December 1, 2023
  8. We propose a new Scaled Population (SP) based arithmetic computation approach that achieves considerable improvements over existing stochastic computing (SC) techniques. First, SP arithmetic introduces scaling operations that significantly reduce the numerical errors as compared to SC. Experiments show accuracy improvements of a single multiplication and addition operation by 6.3X and 4X, respectively. Secondly, SP arithmetic erases the inherent serialization associated with stochastic computing, thereby significantly improves the computational delays. We design each of the operations of SP arithmetic to take O(1) gate delays, and eliminate the need of serially iterating over the bits of the population vector. Our SPmore »approach improves the area, delay and power compared with conventional stochastic computing on an FPGA-based implementation. We also apply our SP scheme on a handwritten digit recognition application (MNIST), improving the recognition accuracy by 32.79% compared to SC.« less