skip to main content


Search for: All records

Creators/Authors contains: "Hu, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 28, 2025
  2. Free, publicly-accessible full text available March 8, 2025
  3. Free, publicly-accessible full text available March 12, 2025
  4. Free, publicly-accessible full text available March 20, 2025
  5. Free, publicly-accessible full text available February 28, 2025
  6. Free, publicly-accessible full text available February 2, 2025
  7. We probe the conduction-band offsets (CBOs) and confined states at GaAs/GaAsNBi quantum wells (QWs). Using a combination of capacitance–voltage (C–V) measurements and self-consistent Schrödinger–Poisson simulations based on the effective mass approximation, we identify an N-fraction dependent increase in CBO, consistent with trends predicted by the band anti-crossing model. Using the computed confined electron states in conjunction with photoluminescence spectroscopy data, we show that N mainly influences the conduction band and confined electron states, with a relatively small effect on the valence band and confined hole states in the quaternary QWs. This work provides important insight toward tailoring CBO and confined electron energies, both needed for optimizing infrared optoelectronic devices.

     
    more » « less
  8. The Brillouin instability (BI) caused by stimulated Brillouin scattering (SBS) can limit the output power of high-energy laser amplifiers. Pseudo-random bitstream (PRBS) phase modulation is an effective modulation technique to suppress BI. In this paper, we study the impact of the PRBS order and modulation frequency on the BI threshold for different Brillouin linewidths. PRBS phase modulation with a higher order will break the power into a larger number of frequency tones with a lower maximum power in each tone, leading to a higher BI threshold and a smaller tone spacing. However, the BI threshold may saturate when the tone spacing in the power spectra approaches the Brillouin linewidth. For a given Brillouin linewidth, our results allow us to determine the order of PRBS beyond which there is no further improvement in the threshold. When a specific threshold power is desired, the minimum PRBS order required decreases as the Brillouin linewidth increases. When the PRBS order is too large, the BI threshold deteriorates, and this deterioration occurs at smaller PRBS orders as the Brillouin linewidth increases. We investigate the dependence of the optimal PRBS order on the averaging time and fiber length, and we did not find a significant dependence. We also derive a simple equation that relates the BI threshold for different PRBS orders. Hence, the increase in BI threshold using an arbitrary order PRBS phase modulation may be predicted using the BI threshold from a lower PRBS order, which is computationally less time-consuming to compute.

     
    more » « less