- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Minpeng (2)
-
Yu, Zhongjie (2)
-
Baker, John M (1)
-
Gentry, Lowell E. (1)
-
Griffis, Timothy J (1)
-
Guan, Kaiyu (1)
-
Hu, Yinchao (1)
-
Margenot, Andrew J. (1)
-
Millet, Dylan B (1)
-
Mitchell, Corey A. (1)
-
Mohn, Joachim (1)
-
Wang, Dongqi (1)
-
Yang, Wendy H (1)
-
Yang, Wendy H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., > 30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.more » « lessFree, publicly-accessible full text available June 4, 2025
-
Yu, Zhongjie ; Hu, Yinchao ; Gentry, Lowell E. ; Yang, Wendy H. ; Margenot, Andrew J. ; Guan, Kaiyu ; Mitchell, Corey A. ; Hu, Minpeng ( , Water Resources Research)
Abstract Accurately quantifying and predicting the reactive transport of nitrate () in hydrologic systems continues to be a challenge, due to the complex hydrological and biogeochemical interactions that underlie this transport. Recent advances related to time‐variant water age have led to a new method that probes water mixing and selection behaviors using StorAge Selection (SAS) functions. In this study, SAS functions were applied to investigate storage, water selection behaviors, and export regimes in a tile‐drained corn‐soybean field. The natural abundance stable nitrogen and oxygen isotopes of tile drainage were also measured to provide constraints on biogeochemical transformations. The SAS functions, calibrated using chloride measurements at tile drain outlets, revealed a strong young water preference during tile discharge generation. The use of a time‐variant SAS function for tile discharge generated unique water age dynamics that reveal an inverse storage effect driven by the activation of preferential flow paths and mechanically explain the observed variations in isotopes. Combining the water age estimates with isotope fingerprinting shed new light on export dynamics at the tile‐drain scale, where a large mixing volume and the lack of a strong vertical contrast in concentration resulted in chemostatic export regimes. For the first time, isotopes were embedded into a water age‐based transport model to model reactive transport under transient conditions. The results of this modeling study provided a proof‐of‐concept for the potential of coupling water age modeling with isotope analysis to elucidate the mechanisms driving reactive transport.