- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Raymond (2)
-
Ziarek, Lukasz (2)
-
Chuang, Cheng-En (1)
-
Eugster, Patrick (1)
-
Iraci, Grant (1)
-
Viering, Malte (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop a session types based framework for implementing and validating rate-based message passing systems in Internet of Things (IoT) domains. To model the indefinite repetition present in many embedded and IoT systems, we introduce a timed process calculus with a periodic recursion primitive. This allows us to model rate-based computations and communications inherent to these application domains. We introduce a definition of rate based session types in a binary session types setting and a new compatibility relationship, which we call rate compatibility. Programs which type check enjoy the standard session types guarantees as well as rate error freedom --- meaning processes which exchanges messages do so at the same rate. Rate compatibility is defined through a new notion of type expansion, a relation that allows communication between processes of differing periods by synthesizing and checking a common superperiod type. We prove type preservation and rate error freedom for our system, and show a decidable method for type checking based on computing superperiods for a collection of processes. We implement a prototype of our type system including rate compatibility via an embedding into the native type system of Rust. We apply this framework to a range of examples from our target domain such as Android software sensors, wearable devices, and sound processing.more » « less
-
Viering, Malte ; Hu, Raymond ; Eugster, Patrick ; Ziarek, Lukasz ( , Proceedings of the ACM on Programming Languages)This paper presents a formulation of multiparty session types (MPSTs) for practical fault-tolerant distributed programming. We tackle the challenges faced by session types in the context of distributed systems involving asynchronous and concurrent partial failures – such as supporting dynamic replacement of failed parties and retrying failed protocol segments in an ongoing multiparty session – in the presence of unreliable failure detection. Key to our approach is that we develop a novel model of event-driven concurrency for multiparty sessions. Inspired by real-world practices, it enables us to unify the session-typed handling of regular I/O events with failure handling and the combination of features needed to express practical fault-tolerant protocols. Moreover, the characteristics of our model allow us to prove a global progress property for well-typed processes engaged in multiple concurrent sessions, which does not hold in traditional MPST systems. To demonstrate its practicality, we implement our framework as a toolchain and runtime for Scala, and use it to specify and implement a session-typed version of the cluster management system of the industrial-strength Apache Spark data analytics framework. Our session-typed cluster manager composes with other vanilla Spark components to give a functioning Spark runtime; e.g., it can execute existing third-party Spark applications without code modification. A performance evaluation using the TPC-H benchmark shows our prototype implementation incurs an average overhead below 10%.more » « less