Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Communication is a key bottleneck in federated learning where a large number of edge devices collaboratively learn a model under the orchestration of a central server without sharing their own training data. While local SGD has been proposed to reduce the number of FL rounds and become the algorithm of choice for FL, its total communication cost is still prohibitive when each device needs to communicate with the remote server repeatedly for many times over bandwidth-limited networks. In light of both device-to-device (D2D) and device-to-server (D2S) cooperation opportunities in modern communication networks, this paper proposes a new federated optimization algorithm dubbed hybrid local SGD (HL-SGD) in FL settings where devices are grouped into a set of disjoint clusters with high D2D communication bandwidth. HL-SGD subsumes previous proposed algorithms such as local SGD and gossip SGD and enables us to strike the best balance between model accuracy and runtime. We analyze the convergence of HL-SGD in the presence of heterogeneous data for general nonconvex settings. We also perform extensive experiments and show that the use of hybrid model aggregation via D2D and D2S communications in HL-SGD can largely speed up the training time of federated learning.more » « less
-
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other. However, data locality does not provide sufficient privacy protection, and it is desirable to facilitate FL with rigorous differential privacy (DP) guarantee. Existing DP mechanisms would introduce random noise with magnitude proportional to the model size, which can be quite large in deep neural networks. In this paper, we propose a new FL framework with sparsification-amplified privacy. Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee. Since sparsification would increase the number of communication rounds required to achieve a certain target accuracy, which is unfavorable for DP guarantee, we further introduce acceleration techniques to help reduce the privacy cost. We rigorously analyze the convergence of our approach and utilize Renyi DP to tightly account the end-to-end DP guarantee. Extensive experiments on benchmark datasets validate that our approach outperforms previous differentially-private FL approaches in both privacy guarantee and communication efficiency.more » « less
-
To provide intelligent and personalized services on smart devices, machine learning techniques have been widely used to learn from data, identify patterns, and make automated decisions. Machine learning processes typically require a large amount of representative data that are often collected through crowdsourcing from end users. However, user data could be sensitive in nature, and learning machine learning models on these data may expose sensitive information of users, violating their privacy. Moreover, to meet the increasing demand of personalized services, these learned models should capture their individual characteristics. This paper proposes a privacy-preserving approach for learning effective personalized models on distributed user data while guaranteeing the differential privacy of user data. Practical issues in a distributed learning system such as user heterogeneity are considered in the proposed approach. Moreover, the convergence property and privacy guarantee of the proposed approach are rigorously analyzed. Experiments on realistic mobile sensing data demonstrate that the proposed approach is robust to high user heterogeneity and offer a trade-off between accuracy and privacy.more » « less
-
To provide intelligent and personalized services on smart devices, machine learning techniques have been widely used to learn from data, identify patterns, and make automated decisions. Machine learning processes typically require a large amount of representative data that are often collected through crowdsourcing from end users. However, user data could be sensitive in nature, and training machine learning models on these data may expose sensitive information of users, violating their privacy. Moreover, to meet the increasing demand of personalized services, these learned models should capture their individual characteristics. This paper proposes a privacy-preserving approach for learning effective personalized models on distributed user data while guaranteeing the differential privacy of user data. Practical issues in a distributed learning system such as user heterogeneity are considered in the proposed approach. In addition, the convergence property and privacy guarantee of the proposed approach are rigorously analyzed. Experimental results on realistic mobile sensing data demonstrate that the proposed approach is robust to user heterogeneity and offers a good trade-off between accuracy and privacy.more » « less