skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Runbang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Breadth-First Search (BFS) is a fundamental graph traversal algorithm in a level-by-level pattern. It has been widely used in real-world applications, such as social network analysis, scientific computing, and web crawling. However, achieving high performance for BFS on large-scale graphs remains a challenging task due to irregular memory access patterns, diverse graph structures, and the necessity for efficient parallelization. This paper addresses these challenges by designing a highly optimized parallel BFS implementation based on the top-down and bottom-up traversal strategies. It further integrates several key innovations, including graph typea-ware computation strategy selection, graph pruning, twolevel bottom-up, and efficient parallel implementation. We evaluate our method on 11 diverse graphs in terms of size, diameter, and density. On a CPU server with 48 threads, our method achieves an average speedup of 9.5x over the serial BFS implementation. Also, on a synthetic dense graph, our method processes 9.3 billion edges per second, showing its efficiency in dense graph traversal. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. The single-source shortest path (SSSP) problem is essential in graph theory with applications in navigation, biology, social networks, and traffic analysis. The  -Stepping algorithm enhances parallelism by grouping vertices into "buckets" based on their tentative distances. However, its performance depends on values and graph properties. This paper introduces an adaptive parallel Delta-Stepping implementation with three innovations: neighbor reordering, bucket fusion, and graph type-aware selection. Tested on 11 diverse graphs, it achieves an average 7.1× speedup over serial Dijkstra’s algorithm on a 48-thread CPU server. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026