skip to main content

Search for: All records

Creators/Authors contains: "Hu, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 29, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available April 25, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Mobile and embedded devices are becoming ubiquitous. Applications such as rescue with autonomous robots and event analysis on traffic cameras rely on devices with limited power supply and computational sources. Thus, the demand for efficient computer vision algorithms increases. Since 2015, we have organized the IEEE Low-Power Computer Vision Challenge to advance the state of the art in low-power computer vision. We describe the competition organizing details including the challenge design, the reference solution, the dataset, the referee system, and the evolution of the solutions from two winning teams. We examine the winning teams’ development patterns and design decisions, focusing on their techniques to balance power consumption and accuracy. We conclude that a successful competition needs a well-designed reference solution and automated referee system, and a solution with modularized components is more likely to win. We hope this paper provides guidelines for future organizers and contestants of computer vision competitions. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. The process of matching patients with suitable clinical trials is essential for advancing medical research and providing optimal care. However, current approaches face challenges such as data standardization, ethical considerations, and a lack of interoperability between Electronic Health Records (EHRs) and clinical trial criteria. In this paper, we explore the potential of large language models (LLMs) to address these challenges by leveraging their advanced natural language generation capabilities to improve compatibility between EHRs and clinical trial descriptions. We propose an innovative privacy-aware data augmentation approach for LLM-based patient-trial matching (LLM-PTM), which balances the benefits of LLMs while ensuring the security and confidentiality of sensitive patient data. Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%. Additionally, we present case studies to further illustrate the effectiveness of our approach and provide a deeper understanding of its underlying principles. 
    more » « less