skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Chunli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the successful adaptation of the quasi-boson approximation, a technique traditionally employed in nuclear physics, to the analysis of the two-dimensional electron gas. We show that the correlation energy estimated from this approximation agrees closely with the results obtained from quantum Monte Carlo simulations. Our methodology comprehensively incorporates the exchange self-energy, direct scattering, and exchange scattering for a particle-hole pair excited out of the mean-field ground state within the equation-of-motion framework. The linearization of the equation of motion leads to a generalized random phase approximation (gRPA) eigenvalue equation whose spectrum indicates that the plasmon dispersion remains unaffected by exchange effects, while the particle-hole continuum experiences a marked upward shift due to the exchange self-energy. Using the gRPA excitation spectrum, we calculate the zero-point energy of the quasi-boson Hamiltonian, thereby approximating the correlation energy of the original Hamiltonian. This research highlights the potential and effectiveness of applying the quasi-boson approximation to the gRPA spectrum, a fundamental technique in nuclear physics, to extended condensed matter systems. Published by the American Physical Society2024 
    more » « less