skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Huang, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increased use of technology in schools raises new privacy and security challenges for K-12 students---and harms such as commercialization of student data, exposure of student data in security breaches, and expanded tracking of students---but the extent of these challenges is unclear. In this paper, first, we interviewed 18 school officials and IT personnel to understand what educational technologies districts use and how they manage student privacy and security around these technologies. Second, to determine if these educational technologies are frequently endorsed across United States (US) public schools, we compiled a list of linked educational technology websites scraped from 15,573 K-12 public school/district domains and analyzed them for privacy risks. Our findings suggest that administrators lack resources to properly assess privacy and security issues around educational technologies even though they do pose potential privacy issues. Based on these findings, we make recommendations for policymakers, educators, and the CHI research community. 
    more » « less
  2. Abstract Very-high-energy (0.1–100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σand in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites “e1” and “w1” for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power lawdN/dE∝Eαwith α = 2.44 0.12 0.04 + 0.13 + 0.04 and α = 2.35 0.11 0.03 + 0.12 + 0.03 for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Context.Supernova remnants (SNRs) are believed to be capable of accelerating cosmic rays (CRs) to PeV energies. SNR G106.3+2.7 is a prime PeVatron candidate. It is formed by a head region, where the pulsar J2229+6114 and its boomerang-shaped pulsar wind nebula are located, and a tail region containing SN ejecta. The lack of observed gamma ray emission from the two regions of this SNR has made it difficult to assess which region would be responsible for the PeV CRs. Aims.We aim to characterize the very-high-energy (VHE, 0.1–100 TeV) gamma ray emission from SNR G106.3+2.7 by determining the morphology and spectral energy distribution of the region. This is accomplished using 2565 days of data and improved reconstruction algorithms from the High Altitude Water Cherenkov (HAWC) Observatory. We also explore possible gamma ray production mechanisms for different energy ranges. Methods.Using a multi-source fitting procedure based on a maximum-likelihood estimation method, we evaluate the complex nature of this region. We determine the morphology, spectrum, and energy range for the source found in the region. Molecular cloud information is also used to create a template and evaluate the HAWC gamma ray spectral properties at ultra-high-energies (UHE, > 56 TeV). This will help probe the hadronic nature of the highest-energy emission from the region. Results.We resolve one extended source coincident with all other gamma ray observations of the region. The emission reaches above 100 TeV and its preferred log-parabola shape in the spectrum shows a flux peak in the TeV range. The molecular cloud template fit on the higher energy data reveals that the SNR’s energy budget is fully capable of producing a purely hadronic source for UHE gamma rays. Conclusions.The HAWC observatory resolves one extended source between the head and the tail of SNR G106.3+2.7 in the VHE gamma ray regime. The template fit suggests the highest energy gamma rays could come from a hadronic origin. However, the leptonic scenario, or a combination of the two, cannot be excluded at this time. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Free, publicly-accessible full text available October 17, 2025
  5. Abstract We present the most precise measurements to date for the spatial extension and energy spectrum of theγ-ray region between a pulsar’s wind nebula and the interstellar medium, better known as the halo, present around Geminga and PSR B0656+14 (Monogem) using ∼2398 days of >1 TeV data collected by the HAWC observatory. We interpret the data using a physically motivated model for the diffuseγ-ray emission generated from positrons and electrons (e±) injected by the pulsar wind nebula and inverse Compton scattering with interstellar radiation fields. We find the morphologies of the regions inside these halos are characterized by an inhibited diffusion that are approximately three orders of magnitudes smaller than the Galactic average. We also obtain the e±emission efficiencies of 6.6% and 5.1%, respectively, for Geminga and Monogem. These results have remarkable consequences for the study of the particle diffusion in the region between the pulsar wind nebulae and the interstellar medium, and for the interpretation of the flux of positrons measured by the AMS-02 experiment above 10 GeV. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  6. Abstract HESS J1809-193 is an unidentified TeV source, first detected by the High Energy Stereoscopic System (H.E.S.S.) collaboration. The emission originates in a source-rich region that includes several supernova remnants (SNRs) and pulsars including SNR G11.1+0.1, SNR G11.0-0.0, and the young radio pulsar PSR J1809-1917. Originally classified as a pulsar wind nebula candidate, recent studies show the peak of the TeV region overlapping with a system of molecular clouds. This resulted in the revision of the original leptonic scenario to look for alternate hadronic scenarios. Marked as a potential PeVatron candidate, this region has been studied extensively by H.E.S.S. due to its emission extending up to several tens of TeV. In this work, we use 2398 days of data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a systematic source search of the HESS J1809-193 region. We were able to resolve emission detected as an extended component (modelled as a symmetric Gaussian with a 1σradius of 0.°21) with no clear cutoff at high energies and emitting photons up to 210 TeV. We model the multiwavelength observations for the region around HESS J1809-193 using a time-dependent leptonic model and a lepto-hadronic model. Our model indicates that both scenarios could explain the observed data within the region of HESS J1809-193. 
    more » « less
    Free, publicly-accessible full text available August 22, 2025