skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Gangton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transcription factors are multidomain proteins with specific DNA binding and regulatory domains. In the human FoxP subfamily (FoxP1, FoxP2, FoxP3, and FoxP4) of transcription factors, a 90 residue-long disordered region links a Leucine Zipper (ZIP)—known to form coiled-coil dimers—and a Forkhead (FKH) domain—known to form domain swapping dimers. We used replica exchange discrete molecular dynamics simulations, single-molecule fluorescence experiments, and other biophysical tools to understand how domain tethering in FoxP1 impacts dimerization at ZIP and FKH domains and how DNA binding allosterically regulates their dimerization. We found that domain tethering promotes FoxP1 dimerization but inhibits a FKH domain-swapped structure. Furthermore, our findings indicate that the linker mediates the mutual organization and dynamics of ZIP and FKH domains, forming closed and open states with and without interdomain contacts, thus highlighting the role of the linkers in multidomain proteins. Finally, we found that DNA allosterically promotes structural changes that decrease the dimerization propensity of FoxP1. We postulate that, upon DNA binding, the interdomain linker plays a crucial role in the gene regulatory function of FoxP1. 
    more » « less