Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Algorithm building, creating a step-by-step procedure to carry out a solution, is a challenging concept for youth to learn and practice. Kinetic sculpture is a novel context for examining how students may learn algorithms through designing and making. As part of a larger study, we collected and analyzed a total of 18 student pre- and post-tests on computational thinking, physical computing, and arts. To examine how students build algorithms in the process of designing and making a kinetic sculpture, we analyze two vignettes from two small groups in a STEAM-based workshop. Findings show that while designing and building kinetic sculpture, students learned computational thinking and applied algorithms by incorporating inputs, outputs, and variables during the process. This study offers a springboard to investigate how students create and apply algorithms in designing and making kinetic sculpture and provides empirical evidence on how students learn algorithms in a STEAM learning context.Free, publicly-accessible full text available June 12, 2024
-
Abstract—This paper presents a control co-design method for designing the mechanical power takeoff (PTO) system of a dual- flap oscillating surge wave energy converter. Unlike most existing work’s simplified representation of harvested power, this paper derives a more realistic electrical power representation based on a concise PTO modelling. This electrical power is used as the objective for PTO design optimization with energy maxi- mization control also taken into consideration to enable a more comprehensive design evaluation. A simple PI control structure speeds up the simultaneous co-optimization of control and PTO parameters, and an equivalent circuit model of the WEC not only streamlines power representation but also facilitates more insightful evaluation of the optimization results. The optimized PTO shows a large improvement in terms of power potential and actual power performance. It’s found the generator’sFree, publicly-accessible full text available June 5, 2024
-
Past research has recognized culture and gender variation in the experience of emotion, yet this has not been examined on a level of effective connectivity. To determine culture and gender differences in effec-tive connectivity during emotional experiences, we applied dynamic causal modeling (DCM) to electro-encephalography (EEG) measures of brain activity obtained from Chinese and American participants while they watched emotion-evoking images. Relative to US participants, Chinese participants favored a model bearing a more integrated dorsolateral prefrontal cortex (dlPFC) during fear v. neutral experiences. Meanwhile, relative to males, females favored a model bearing a less integrated dlPFC during fear v. neutral experiences. A culture-gender interaction for winning models was also observed; only US partici-pants showed an effect of gender, with US females favoring a model bearing a less integrated dlPFC compared to the other groups. These findings suggest that emotion and its neural correlates depend in part on the cultural background and gender of an individual. To our knowledge, this is also the first study to apply both DCM and EEG measures in examining culture-gender interaction and emotion.Free, publicly-accessible full text available February 1, 2024
-
Free, publicly-accessible full text available November 1, 2023
-
Given the persistent issues of equity in technology-rich fields, this study argues that our choice of tools and materials significantly impacts both what is possible to be learned as well as who participates. This study examined students’ learning of basic circuitry concepts through the use of paper circuitry toolkits in art-based activities. The data was collected in a 4-day workshop for middle school students (N=17). Findings showed that arts integration promoted the creation of paper circuits that leads to artistic exploration into STEM engagement. Pre- and post-tests results showed improvement for students by gender. Although the boys outperformed the girls on paper circuits, the girls outperformed the boys on e-textiles which is considered more “feminine” than others. The findings imply the nuances between material property and gendered practice to understand how we can better design tools and materials to rupture stagnant norms around educational practices.
-
Temperature dependent pinning efficiency in multilayer and single layer BZO/YBCO nanocomposite filmsAbstract The BaZrO 3 /YBa 2 Cu 3 O 7 (BZO/YBCO) interface has been found to affect the vortex pinning efficiency of one-dimensional artificial pinning centers (1D-APC) of BZO. A defective BZO/YBCO interface due to a lattice mismatch of ∼7.7% has been blamed for the reduced pinning efficiency. Recently, we have shown incorporating Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x spacer layers in BZO/YBCO nanocomposite film in multilayer (ML) format can lead to a reduced lattice mismatch ∼1.4% through the enlargement of lattice constant of YBCO via Ca diffusion and partial Ca/Cu replacement on Cu-O planes. In this work, the effect of this interface engineering on the BZO 1D-APC pinning efficiency is investigated at temperatures of 65-81 K through a comparison between 2 and 6 vol.% BZO/YBCO ML samples with their single-layer (SL) counterparts. An overall higher pinning force ( F p ) density has been observed on the ML samples as compared to their SL counterparts. Specifically, the peak value of F p ( F p,max ) for the 6% BZO/YBCO ML film is about ∼ 4 times of that of its SL counterpart at 65 K. In addition, the location of the F p,max (more »
-
In order to contextualize calculus, first-year engineering students take on a semester-long design project that grounds engineering design as an epistemic practice. The project is designed to motivate students to creatively and collaboratively apply mathematical modeling to design roller coasters. Students are asked to engage as engineers and respond to a hypothetical theme park that has solicited design proposals for a new roller coaster. Students are required to use various mathematical functions such as polynomials and exponentials to create a piece-wise function that models the roller coaster track geometry. The entire project is composed of five modules, each lasting three weeks. Each module is associated with a specific calculus topic and is integrated into the design process in a form of a design constraint or performance metric. The module topics include continuity, smoothness, local maxima and minima, inflection points, and area under the curve. Students are expected to refine their models in each module, resulting in the iteration of the previous design to satisfy a new set of requirements. This paper presents the project organization, assessment methods, and student feedback. This work is part of a multi-year course intervention and professional development NSF project to increase the success of underrepresentedmore »