This review delves into the profound implications of flooding events on buried infrastructures, specifically pipelines, tunnels, and culverts. While these buried infrastructures are vital for community resilience, their susceptibility to damage from flooding, storm surges, and hurricanes poses significant challenges. Unlike the obvious impact on above-ground structures, the effects of flooding on buried infrastructures, being out of sight, are not quickly and easily observable. This review aims to 1) review the state-of-the-art research on the flooding effects on buried structures and summarize causes of failures of buried infrastructures induced by flooding; 2) identify the research gaps on this topic to motivate in-depth investigations; and 3) discuss the future research directions. This review sheds light on how factors contributing to the vulnerability of buried infrastructures are multifaceted and can vary based on the specific characteristics of the infrastructure, the local environment, and the nature of the flood event. Despite the availability of many articles on the topic, this review also highlights a lack of methodologies to assess flooding damage and its impact on the serviceability of buried infrastructures. We suggested three future research directions to bridge this research gap including investigating and distinguishing key factors to quantify flooding damage to buried infrastructures, developing advanced modeling techniques, and exploring the integration of smart technologies in health monitoring of buried infrastructures.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 17, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Abstract The warm-to-cold densification of Atlantic Water (AW) around the perimeter of the Nordic Seas is a critical component of the Atlantic Meridional Overturning Circulation (AMOC). However, it remains unclear how ongoing changes in air-sea heat flux impact this transformation. Here we use observational data, and a one-dimensional mixing model following the flow, to investigate the role of air-sea heat flux on the cooling of AW. We focus on the Norwegian Atlantic Slope Current (NwASC) and Front Current (NwAFC), where the primary transformation of AW occurs. We find that air-sea heat flux accounts almost entirely for the net cooling of AW along the NwAFC, while oceanic lateral heat transfer appears to dominate the temperature change along the NwASC. Such differing impacts of air-sea interaction, which explain the contrasting long-term changes in the net cooling along two AW branches since the 1990s, need to be considered when understanding the AMOC variability.more » « less
-
Abstract Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits—Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.
-
Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models’ prediction performance and interpretability. This research harnesses the power of the random forest (RF) model to predict the compressive strength of LC3. Three feature reduction methods—Pearson correlation, SHapley Additive exPlanations, and variable importance—are employed to analyze the influence of LC3 components and mixture design on compressive strength. Practical guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigorous screening of insignificant variables from the database, the RF model conserves computational resources while also producing high-fidelity predictions. Additionally, a feature enhancement method is utilized, consolidating numerous input variables into a singular feature while feeding the RF model with richer information, resulting in a substantial improvement in prediction accuracy. Overall, this study provides a novel pathway to apply ML to LC3, emphasizing the need to tailor ML models to cement chemistry rather than employing them generically.
-
Free, publicly-accessible full text available April 1, 2025
-
Abstract In order to quantify pelagic‐benthic coupling on high‐latitude shelves, it is imperative to identify the different physical mechanisms by which phytoplankton are exported to the sediments. In June–July 2023, a field program documented the evolution of an under‐ice phytoplankton bloom on the northeast Chukchi shelf. Here, we use in situ data from the cruise, a simple numerical model, historical water column data, and ocean reanalysis fields to characterize the physical setting and describe the dynamically driven vertical export of chlorophyll associated with the bloom. A water mass front separating cold, high‐nutrient winter water in the north and warmer summer waters to the south—roughly coincident with the ice edge—supported a baroclinic jet which is part of the Central Channel flow branch that veers eastward toward Barrow Canyon. A plume of high chlorophyll fluorescence extending from the near‐surface bloom in the winter water downwards along the front was measured throughout the cruise. Using a passive tracer to represent phytoplankton in the model, it was demonstrated that the plume is the result of subduction due to baroclinic instability of the frontal jet. This process, in concert with the gravitational sinking, pumps the chlorophyll downwards an order of magnitude faster than gravitational sinking alone. Particle tracking using the ocean reanalysis fields reveals that a substantial portion of the chlorophyll away from the front is advected off of the northeast Chukchi shelf before reaching the bottom. This highlights the importance of the frontal subduction process for delivering carbon to the sea floor.