skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Liping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Abstract This study integrated high‐throughput computational modeling with experimental validation to investigate rare earth (RE) phosphates as potential environmental barrier coatings (EBCs) for SiC‐based ceramic matrix composites (CMCs). Although RE silicates have been widely studied for EBC applications, they are prone to degradation due to water vapor corrosion and silica volatilization at high temperatures. RE phosphates, with their strong P–O bonds, offer a promising alternative with improved resistance to volatilization. Using the AFLOW computational framework, we performed density functional theory calculations to evaluate the thermomechanical properties of single‐component RE phosphates. Specifically, AFLOW Automatic Elasticity Library (AEL) was employed to predict mechanical properties, and AFLOW Automatic GIBBS Library (AGL) and AFLOW Quasiharmonic Approximation (QHA) were used to estimate thermal properties. Our results indicate that although the AGL method performs well in predicting thermal conductivity, it may not be suitable for screening the coefficient of thermal expansion of RE phosphates. Additionally, we explored the concept of configurational disorder in high‐entropy phosphates to enhance their thermal performance. Our experimental validation supported the computational findings, demonstrating that incorporating multiple RE elements into phosphates can significantly improve the performance of EBCs for SiC‐based CMCs. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  4. Abstract Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Understanding how nanoparticles deform under compression not only is of scientific importance but also has practical significance in various applications such as tribology, nanoparticle-based probes, and the dry grinding of raw materials. In this study, we conducted compression tests on model brittle glassy nanoparticles using molecular dynamics simulations. We found that during the early stages of plastic deformation, shear bands formed in a similar pattern regardless of the nanoparticle size. However, as the deformation continued, dominant cracks emerged in large nanoparticles while being suppressed in smaller ones. This size-dependent brittle-to-ductile transition can be explained by a simple model based on Griffith's theory. We also investigated the effect of the surface stress state on fracture using thermally tempered nanoparticles. We observed that the presence of compressive surface stress strengthened the nanoparticle by suppressing crack formation, even when a pre-notch was present. On the other hand, tensile surface stress had the opposite effect. Interestingly, nanoparticles with both tensile and compressive surface stress promoted shear deformation, which could potentially compromise the mechanical performance of tempered glass despite delayed crack formation. 
    more » « less