skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Shengnan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove that large classes of algebras in the framework of root of unity quantum cluster algebras have the structures of maximal orders in central simple algebras and Cayley–Hamilton algebras in the sense of Procesi. We show that every root of unity upper quantum cluster algebra is a maximal order and obtain an explicit formula for its reduced trace. Under mild assumptions, inside each such algebra we construct a canonical central subalgebra isomorphic to the underlying upper cluster algebra, such that the pair is a Cayley–Hamilton algebra; its fully Azumaya locus is shown to contain a copy of the underlying cluster A \mathcal {A} -variety. Both results are proved in the wider generality of intersections of mixed quantum tori over subcollections of seeds. Furthermore, we prove that all monomial subalgebras of root of unity quantum tori are Cayley–Hamilton algebras and classify those ones that are maximal orders. Arbitrary intersections of those over subsets of seeds are also proved to be Cayley–Hamilton algebras. Previous approaches to constructing maximal orders relied on filtration and homological methods. We use new methods based on cluster algebras. 
    more » « less