skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Tao-Tse"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The economic production and integration of nanomaterial-based wearable energy storage devices with mechanically-compliable form factors and reliable performance will usher in exciting opportunities in emerging technologies such as consumer electronics, pervasive computing, human–machine interface, robotics, and the Internet of Things. Despite the increased interests and efforts in nanotechnology-enabled flexible energy storage devices, reducing the manufacturing and integration costs while continuously improving the performance at the device and system level remains a major technological challenge. The inkjet printing process has emerged as a potential economic method for nanomanufacturing printed electronics, sensors, and energy devices. Nevertheless, there have been few reports reviewing the scalable nanomanufacturing of inkjet printed wearable energy storage devices. To fill this gap, here we review the recent advances in inkjet printed flexible energy storage technologies. We will provide an in-depth discussion focusing on the materials, manufacturing process integration, and performance issues in designing and implementing the inkjet printing of wearable energy storage devices. We have also compiled a comprehensive list of the reported device technologies with the corresponding processing factors and performance metrics. Finally, we will discuss the challenges and opportunities associated with related topics. The rapid and exciting progress achieved in many emerging and traditional disciplines is expected to lead to more theoretical and experimental advances that would ultimately enable the scalable nanomanufacturing of inkjet printed wearable energy storage devices. 
    more » « less