Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            The wider application of spintronic devices requires the development of new material platforms that can efficiently manipulate spin. Bismuthate-based superconductors are centrosymmetric systems that are generally thought to offer weak spin–orbit coupling. Here, we report a large spin–orbit torque driven by spin polarization generated in heterostructures based on the bismuthate BaPb1-xBixO3 (which is in a non-superconducting state). Using spin-torque ferromagnetic resonance and d.c. non-linear Hall measurements, we measure a spin–orbit torque efficiency of around 2.7 and demonstrate current driven magnetization switching at current densities of 4×10^5 A〖cm〗^(-2). We suggest that the unexpectedly large current-induced torques could be the result of an orbital Rashba effect associated with local inversion symmetry breaking in BaPb1-xBixO3.more » « less
- 
            Crystallographic Spin Torque Conductivity Tensor of Epitaxial IrO 2 Thin Films for Oxide SpintronicsAbstract Unconventional spin‐orbit torques arising from electric‐field‐generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high‐density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO2are determined via measurements of conventional (in‐plane) anti‐damping torques for IrO2thin films in the high‐symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti‐damping torques for IrO2thin films in the lower‐symmetry (101), (110), and (111) orientations, finding good agreement. The results confirm that spin‐orbit torques from all these orientations are consistent with the bulk symmetries of IrO2, and show how simple measurements of conventional torques from high‐symmetry orientations of anisotropic thin films can provide an accurate prediction of the unconventional torques from lower‐symmetry orientations.more » « less
- 
            Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.more » « less
- 
            Abstract Highly responsive, voltage‐tunable dielectrics are essential for microwave‐telecommunication electronics. Ferroelectric/relaxor materials have been leading candidates for such functionality and have exhibited agile dielectric responses. Here, it is demonstrated that relaxor materials developed from antiferroelectrics can achieve both ultrahigh dielectric response and tunability. The system, based on alloying the archetypal antiferroelectric PbZrO3with the dielectric BaZrO3, exhibits a more complex phase evolution than that in traditional relaxors and is characterized by an unconventional multi‐phase competition between antiferroelectric, ferroelectric, and paraelectric order. This interplay of phases can greatly enhance the local heterogeneities and results in relaxor characteristics while preserving considerable polarizability. Upon studying Pb1‐xBaxZrO3forx= 0‐0.45, Pb0.65Ba0.35ZrO3is found to provide for exceptional dielectric tunability under low bias fields (≈81% at 200 kV cm−1and ≈91% at 500 kV cm−1) at 10 kHz, outcompeting most traditional relaxor ferroelectric films. This high tunability is sustained in the radio‐frequency range, resulting in a high commutation quality factor (>2000 at 1 GHz). This work highlights the phase evolution from antiferroelectrics (with lower, “positive” dielectric tunability) to relaxors (with higher, “negative” tunability), underscoring a promising approach to develop relaxors with enhanced functional capabilities and new possibilities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
