skip to main content

Search for: All records

Creators/Authors contains: "Huang, Yungui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Background Health care and well-being are 2 main interconnected application areas of conversational agents (CAs). There is a significant increase in research, development, and commercial implementations in this area. In parallel to the increasing interest, new challenges in designing and evaluating CAs have emerged. Objective This study aims to identify key design, development, and evaluation challenges of CAs in health care and well-being research. The focus is on the very recent projects with their emerging challenges. Methods A review study was conducted with 17 invited studies, most of which were presented at the ACM (Association for Computing Machinery) CHI 2020 conference workshop on CAs for health and well-being. Eligibility criteria required the studies to involve a CA applied to a health or well-being project (ongoing or recently finished). The participating studies were asked to report on their projects’ design and evaluation challenges. We used thematic analysis to review the studies. Results The findings include a range of topics from primary care to caring for older adults to health coaching. We identified 4 major themes: (1) Domain Information and Integration, (2) User-System Interaction and Partnership, (3) Evaluation, and (4) Conversational Competence. Conclusions CAs proved their worth during the pandemic as health screening tools, and are expected to stay to further support various health care domains, especially personal health care. Growth in investment in CAs also shows the value as a personal assistant. Our study shows that while some challenges are shared with other CA application areas, safety and privacy remain the major challenges in the health care and well-being domains. An increased level of collaboration across different institutions and entities may be a promising direction to address some of the major challenges that otherwise would be too complex to be addressed by the projects with their limited scope and budget. 
    more » « less
  3. Abstract Motivation Graph embedding learning that aims to automatically learn low-dimensional node representations, has drawn increasing attention in recent years. To date, most recent graph embedding methods are evaluated on social and information networks and are not comprehensively studied on biomedical networks under systematic experiments and analyses. On the other hand, for a variety of biomedical network analysis tasks, traditional techniques such as matrix factorization (which can be seen as a type of graph embedding methods) have shown promising results, and hence there is a need to systematically evaluate the more recent graph embedding methods (e.g. random walk-based and neural network-based) in terms of their usability and potential to further the state-of-the-art. Results We select 11 representative graph embedding methods and conduct a systematic comparison on 3 important biomedical link prediction tasks: drug-disease association (DDA) prediction, drug–drug interaction (DDI) prediction, protein–protein interaction (PPI) prediction; and 2 node classification tasks: medical term semantic type classification, protein function prediction. Our experimental results demonstrate that the recent graph embedding methods achieve promising results and deserve more attention in the future biomedical graph analysis. Compared with three state-of-the-art methods for DDAs, DDIs and protein function predictions, the recent graph embedding methods achieve competitive performance without using any biological features and the learned embeddings can be treated as complementary representations for the biological features. By summarizing the experimental results, we provide general guidelines for properly selecting graph embedding methods and setting their hyper-parameters for different biomedical tasks. Availability and implementation As part of our contributions in the paper, we develop an easy-to-use Python package with detailed instructions, BioNEV, available at:, including all source code and datasets, to facilitate studying various graph embedding methods on biomedical tasks. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less