Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Connected and automated trucks (CATs) have the potential to transform the transportation system and logistics industry. Their unique features, such as operational strategies and truck driving behaviors, can affect transportation system performance. For successful development, testing and deployment of CATs, analysis, modeling, and simulation (AMS) plays an important role, especially in evaluating the impacts of CAT technologies on existing transportation systems. This paper presents a comprehensive review and assessment of up-to-date studies related to CAT AMS, focusing on three correlated elements: CAT applications, data, and tools. The research delves into CAT applications from individual CAT and CAT fleet to CAT-involved traffic. It explores available data sources relevant to CAT system use cases, assessing their potential issues and opportunities. The study also reviews existing AMS tools used to analyze CAT applications at both operational performance and network integration levels, emphasizing research needs in CAT-specific tools development. The findings identify the data needs and point out that existing AMS tools may not capture the complexity of CAT operation, which involves driving behaviors, vehicle-to-everything communications, autonomous capabilities, and response to truck-specific scenarios. The study will lay a solid foundation for further development of the AMS framework for CATs and provide guidance to future research of CAT applications.more » « lessFree, publicly-accessible full text available February 27, 2026
-
Perceiving the environment is one of the most fundamental keys to enabling Cooperative Driving Automation, which is regarded as the revolutionary solution to addressing the safety, mobility, and sustainability issues of contemporary transportation systems. Although an unprecedented evolution is now happening in the area of computer vision for object perception, state-of-the-art perception methods are still struggling with sophisticated real-world traffic environments due to the inevitable physical occlusion and limited receptive field of single-vehicle systems. Based on multiple spatially separated perception nodes, Cooperative Perception (CP) is born to unlock the bottleneck of perception for driving automation. In this paper, we comprehensively review and analyze the research progress on CP, and we propose a unified CP framework. The architectures and taxonomy of CP systems based on different types of sensors are reviewed to show a high-level description of the workflow and different structures for CP systems. The node structure, sensing modality, and fusion schemes are reviewed and analyzed with detailed explanations for CP. A Hierarchical Cooperative Perception (HCP) framework is proposed, followed by a review of existing open-source tools that support CP development. The discussion highlights the current opportunities, open challenges, and anticipated future trends.more » « lessFree, publicly-accessible full text available November 1, 2025