skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huba, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the impact of vertical ionospheric drift during daytime on the evolution of predawn equatorial plasma bubbles by conducting model simulations using “Sami3 is Another Model of the Ionosphere.” The upward drift of the ionosphere transports bubbles to higher altitudes, where their lifetime is set by the atomic oxygen photoionization rate. While the bubbles generated at predawn persist into dayside, the bubbles generated shortly after sunset diminish before sunrise. Therefore, post‐sunset bubbles do not contribute to daytime electron density irregularities. Bubbles maintain their field‐aligned characteristics throughout the daytime regardless of the vertical ionospheric drift. This property allows bubbles to exist near the magnetic equator despite poleward plasma transport by the fountain process. The shift of irregularity concentration to higher latitudes over time in satellite observations is explained by the combined effect of transport of bubbles to higher altitudes and rapid refilling of depletions near the magnetic equator. 
    more » « less
  2. Abstract This paper conducts a multi‐instrument and data assimilation analysis of the three‐dimensional ionospheric electron density responses to the total solar eclipse on 08 April 2024. The altitude‐resolved electron density variations over the continental US and adjacent regions are analyzed using the Millstone Hill incoherent scatter radar data, ionosonde observations, Swarm in situ measurements, and a novel TEC‐based ionospheric data assimilation system (TIDAS) with SAMI3 model as the background. The principal findings are summarized as follows: (a) The ionospheric hmF2 exhibited a slight enhancement in the initial phase of the eclipse, followed by a distinct reduction of 20–30 km in the recovery phase of the eclipse. The hmF2 in the umbra region showed a post‐eclipse fluctuation, characterized by wavelike perturbations of 10–25 km in magnitude and a period of 30 min. (b) There was a substantial reduction in ionospheric electron density of 20%–50% during the eclipse, with the maximum depletion observed in the F‐region around 200–250 km. The ionospheric electron density variation exhibited a significant altitude‐dependent feature, wherein the response time gradually delayed with increasing altitude. (c) The bottomside ionospheric electron density displayed an immediate reduction after local eclipse began, reaching maximum depletion 5–10 min after the maximum obscuration. In contrast, the topside ionospheric electron density showed a significantly delayed response, with maximum depletion occurring 1–2.5 hr after the peak obscuration. 
    more » « less