skip to main content


Search for: All records

Creators/Authors contains: "Huber, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 13, 2024
  2. Systematic land use planning to address environmental impacts does not typically include human health and wellbeing as explicit inputs. We tested the effects of including issues related to human health, ecosystem services, and community wellbeing on the outputs of a standard land use planning process which is primarily focused on environmental variables. We consulted regional stakeholders to identify the health issues that have environmental links in the Sacramento, California region and to identify potential indicators and datasets that can be used to assess and track these issues. Marxan planning software was used to identify efficient land use patterns to maximize both ecological conservation and human health outcomes. Outputs from five planning scenarios were compared and contrasted, resulting in a spatially explicit series of tradeoffs across the scenarios. Total area required to meet imputed goals ranged from 10.4% to 13.4% of the total region, showing somewhat less efficiency in meeting biodiversity goals when health outcomes are included. Additionally, we found 4.8% of residential areas had high greening needs, but this varied significantly across the six counties. The work provides an example of how integrative assessment can help inform management decisions or stakeholder negotiations potentially leading to better management of the production landscapes in food systems. 
    more » « less
  3. Solving the wicked problems of food system sustainability requires a process of knowledge co-production among diverse actors in society. We illustrate a generalized workflow for knowledge co-production in food systems with a pair of case studies from the response of the meat and dairy production sectors in the wake of the COVID-19 pandemic. The first case study serves as an example of a scientific workflow and uses a GIS method (location allocation) to examine the supply chain linkages between meat and dairy producers and processors in Ohio. This analysis found that meat producers and processors are less clustered and more evenly distributed across the state than dairy producers and processors, with some dairy processors potentially needing to rely on supply from producers up to 252 km away. The second case study in California adds an example of a stakeholder workflow in parallel to a scientific workflow and describes the outcome of a series of interviews with small and mid-scale meat producers and processors concerning their challenges and opportunities, with the concentration of processors arising as the top challenge faced by producers. We present a pair of workflow diagrams for the two case studies that illustrate where the processes of knowledge co-production are situated. Examining these workflow processes highlights the importance of data privacy, data governance, and boundary spanners that connect stakeholders. 
    more » « less
  4. Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the COVID-19 pandemic. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems, support widespread contributions to and acceptance of solutions to these challenges, and provide concrete benchmarks to measure progress and understand tradeoffs among strategies along multiple dimensions? This article introduces and defines food systems informatics (FSI) as a tool to enhance equity, sustainability, and resilience of food systems through collaborative, user-driven interaction, negotiation, experimentation, and innovation within food systems. Specific benefits we foresee in further development of FSI platforms include the creation of capacity-enabling verifiable claims of sustainability, food safety, and human health benefits relevant to particular locations and products; the creation of better incentives for the adoption of more sustainable land use practices and for the creation of more diverse agro-ecosystems; the wide-spread use of improved and verifiable metrics of sustainability, resilience, and health benefits; and improved human health through better diets. 
    more » « less
  5. Free, publicly-accessible full text available December 1, 2024
  6. A variety of stakeholders are concerned with many issues regarding the sustainability of our complex global food system. Yet navigating and comparing the plethora of issues and indicators across scales, commodities, and regions can be daunting, particularly for different communities of practice with diverse goals, perspectives, and decision-making workflows. This study presents a malleable workflow to help different stakeholder groups identify the issues and indicators that define food system sustainability for their particular use case. By making information used in such workflows semantically-consistent, the output from each unique case can be easily compared and contrasted across domains, contributing to both a deeper and broader understanding of what issues and indicators define a resilient global food system. 
    more » « less