- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Huberich, Lysander (3)
-
Schuler, Bruno (3)
-
Torsi, Riccardo (3)
-
Lin, Yu-Chuan (2)
-
Wang, Ke (2)
-
Allerbeck, Jonas (1)
-
Asbury, John B (1)
-
Asbury, John B. (1)
-
Das, Saptarshi (1)
-
Dong, Chengye (1)
-
Fasel, Roman (1)
-
Feidler, Maxwell (1)
-
Gröning, Oliver (1)
-
Habis, Fatimah (1)
-
Hennig, Richard_G (1)
-
Lin, Yu‐Chuan (1)
-
Marques, Esteban (1)
-
Munson, Kyle T (1)
-
Munson, Kyle T. (1)
-
Pendurthi, Rahul (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Substitutionally doped transition metal dichalcogenides (TMDs) are essential for advancing TMD‐based field effect transistors, sensors, and quantum photonic devices. However, the impact of local dopant concentrations and dopant–dopant interactions on charge doping and defect formation within TMDs remains underexplored. Here, a breakthrough understanding of the influence of rhenium (Re) concentration is presented on charge doping and defect formation in MoS2monolayers grown by metal–organic chemical vapor deposition (MOCVD). It is shown that Re‐MoS2films exhibit reduced sulfur‐site defects, consistent with prior reports. However, as the Re concentration approaches ⪆2 atom%, significant clustering of Re in the MoS2is observed. Ab Initio calculations indicate that the transition from isolated Re atoms to Re clusters increases the ionization energy of Re dopants, thereby reducing Re‐doping efficacy. Using photoluminescence (PL) spectroscopy, it is shown that Re dopant clustering creates defect states that trap photogenerated excitons within the MoS2lattice, resulting in broad sub‐gap emission. These results provide critical insights into how the local concentration of metal dopants influences carrier density, defect formation, and exciton recombination in TMDs, offering a novel framework for designing future TMD‐based devices with improved electronic and photonic properties.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Xiang, Feifei; Huberich, Lysander; Vargas, Preston_A; Torsi, Riccardo; Allerbeck, Jonas; Tan, Anne_Marie_Z; Dong, Chengye; Ruffieux, Pascal; Fasel, Roman; Gröning, Oliver; et al (, Nature Communications)Abstract The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized.$${\mathrm{Vac}}_{{{{{{{{\rm{S}}}}}}}}}^{-1}$$ as well as$${{\mathrm{Re}}}_{{{{{{{{\rm{Mo}}}}}}}}}^{0}$$ and$${\mathrm{Re}}_{{\rm{Mo}}}^{-1}$$ exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.more » « less
-
Torsi, Riccardo; Munson, Kyle T.; Pendurthi, Rahul; Marques, Esteban; Van Troeye, Benoit; Huberich, Lysander; Schuler, Bruno; Feidler, Maxwell; Wang, Ke; Pourtois, Geoffrey; et al (, ACS Nano)