skip to main content

Search for: All records

Creators/Authors contains: "Huertas-Company, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present the MaNGA PyMorph photometric Value Added Catalogue (MPP-VAC-DR17) and the MaNGA Deep Learning Morphological VAC (MDLM-VAC-DR17) for the final data release of the MaNGA survey, which is part of the SDSS Data Release 17 (DR17). The MPP-VAC-DR17 provides photometric parameters from Sérsic and Sérsic+Exponential fits to the two-dimensional surface brightness profiles of the MaNGA DR17 galaxy sample in the g, r, and i bands (e.g. total fluxes, half-light radii, bulge-disc fractions, ellipticities, position angles, etc.). The MDLM-VAC-DR17 provides deep-learning-based morphological classifications for the same galaxies. The MDLM-VAC-DR17 includes a number of morphological properties, for example, a T-Type, a finer separation between elliptical and S0, as well as the identification of edge-on and barred galaxies. While the MPP-VAC-DR17 simply extends the MaNGA PyMorph photometric VAC published in the SDSS Data Release 15 (MPP-VAC-DR15) to now include galaxies that were added to make the final DR17, the MDLM-VAC-DR17 implements some changes and improvements compared to the previous release (MDLM-VAC-DR15): Namely, the low end of the T-Types is better recovered in this new version. The catalogue also includes a separation between early or late type, which classifies the two populations in a complementary way to the T-Type, especially at the intermediatemore »types (−1 < T-Type < 2), where the T-Type values show a large scatter. In addition, k-fold-based uncertainties on the classifications are also provided. To ensure robustness and reliability, we have also visually inspected all the images. We describe the content of the catalogues and show some interesting ways in which they can be combined.« less
    Free, publicly-accessible full text available December 3, 2022
  2. Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample andmore »to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.« less