skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huey, Raymond B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Parents often weigh social, familial and cultural considerations when choosing their baby's name, but the name they choose could potentially be influenced by their physical or biotic environments. Here we examine whether the popularity of month and season names of girls covary geographically with environmental variables. In the continental USA, April, May and June (Autumn, Summer) are the most common month (season) names: April predominates in southern states (early springs), whereas June predominates in northern states (later springs). Whether April's popularity has increased with recent climate warming is ambiguous. Autumn is most popular in northern states, where autumn foliage is notably colourful, and in eastern states having high coverage of deciduous foliage. On a continental scale, Autumn was most popular in English-speaking countries with intense colouration of autumn foliage. These analyses are descriptive but indicate that climate and vegetation sometimes influence parental choice of their baby's name. 
    more » « less
  2. Abstract Organisms living in seasonal environments often adjust physiological capacities and sensitivities in response to (or in anticipation of) environment shifts. Such physiological and morphological adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation”) can be detected either by measuring physiological capacities and sensitivities of organisms retrieved directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and measuring organisms maintained in the laboratory under conditions that attempt to mimic or track natural ones. But mimicking natural conditions in the laboratory is challenging – doing so requires prior natural-history knowledge of ecologically relevant body temperature cycles, photoperiods, food rations, social environments, among other variables. We argue that traditional laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, photoperiod, food, ‘lockdown’). Consequently, whether the resulting acclimation shifts correctly approximate those in nature is uncertain, and sometimes is dubious. We argue that background natural history information provides opportunities to design acclimation protocols that are not only more ecologically relevant, but also serve as templates for testing the validity of traditional protocols. Finally, we suggest several best practices to help enhance ecological realism. 
    more » « less
  3. Abstract AimUnderstanding and predicting the biological consequences of climate change requires considering the thermal sensitivity of organisms relative to environmental temperatures. One common approach involves ‘thermal safety margins’ (TSMs), which are generally estimated as the temperature differential between the highest temperature an organism can tolerate (critical thermal maximum, CTmax) and the mean or maximum environmental temperature it experiences. Yet, organisms face thermal stress and performance loss at body temperatures below their CTmax,and the steepness of that loss increases with the asymmetry of the thermal performance curve (TPC). LocationGlobal. Time period2015–2019. Major taxa studiedAnts, fish, insects, lizards and phytoplankton. MethodsWe examine variability in TPC asymmetry and the implications for thermal stress for 384 populations from 289 species across taxa and for metrics including ant and lizard locomotion, fish growth, and insect and phytoplankton fitness. ResultsWe find that the thermal optimum (Topt, beyond which performance declines) is more labile than CTmax, inducing interspecific variation in asymmetry. Importantly, the degree of TPC asymmetry increases with Topt. Thus, even though populations with higher Topts in a hot environment might experience above‐optimal body temperatures less often than do populations with lower Topts, they nonetheless experience steeper declines in performance at high body temperatures. Estimates of the annual cumulative decline in performance for temperatures above Toptsuggest that TPC asymmetry alters the onset, rate and severity of performance decrement at high body temperatures. Main conclusionsSpecies with the same TSMs can experience different thermal risk due to differences in TPC asymmetry. Metrics that incorporate additional aspects of TPC shape better capture the thermal risk of climate change than do TSMs. 
    more » « less