- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Amunts, Katrin (1)
-
Araki, Yoichi (1)
-
Burns, Randal (1)
-
Calhoun, Vince D. (1)
-
Calì, Corrado (1)
-
Chun, Miyoung (1)
-
Dallman, Julia E (1)
-
Ebell, Christoph (1)
-
Evans, Alan C. (1)
-
Gidron, Rafi (1)
-
Halchenko, Yaroslav O. (1)
-
Hill, Sean (1)
-
Huganir, Richard (1)
-
Huganir, Richard L (1)
-
Häusser, Michael (1)
-
Kepecs, Adam (1)
-
Khan, Suha (1)
-
Kiar, Gregory (1)
-
Kleissas, Dean M. (1)
-
Koch, Christof (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background and aimsSYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused byde novoor inherited mutations in one copy of theSYNGAP1gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms andSYNGAP1variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. MethodsWe used CRISPR/Cas9 to introduce frameshift mutations in thesyngap1aandsyngap1bzebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. BecauseSYNGAP1is extensively spliced, we mapped splice variants to the two zebrafishsyngap1aandbgenes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafishsyngap1ablarvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. ResultsWe show that CRISPR/Cas9 indels in zebrafishsyngap1aandsyngap1bproduced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafishsyngap1α1-like variant that maps exclusively to thesyngap1bgene. Quantifying locomotor behaviors showed thatsyngap1abmutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutantsyngap1alleles. LimitationsSyngap1loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouseSyngap1homozygotes die at birth, zebrafishsyngap1ab−/−survive to adulthood and are fertile, thus some aspects of symptoms in people withSYNGAP1-Related Disorder are not likely to be reflected in zebrafish. ConclusionOur data support mutations in zebrafishsyngap1abas causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.more » « less
-
Vogelstein, Joshua T.; Mensh, Brett; Häusser, Michael; Spruston, Nelson; Evans, Alan C.; Kording, Konrad; Amunts, Katrin; Ebell, Christoph; Muller, Jeff; Telefont, Martin; et al (, Neuron)
An official website of the United States government
