skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hughes, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of the Research in the Formation of Engineers National Science Foundation funded project, Developing Engineering Experiences and Pathways in Engineering Technology Career Formation (D.E.E.P. Engineering Technology Career Formation), is to develop a greater understanding of the professional identity, institutional culture, and formation of engineer technicians and technologists (ET) who are prepared at two-year colleges. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. Little research on career development and the role of ET in the workforce has previously been conducted prompting national organizations such as NSF and the National Academy of Sciences to prompt more research in this area [1]. The primary objectives of this project are to: (a) identify dimensions of career orientations and anchors at various stages of professional preparation and map to ET career pathways, (b) develop an empirical framework, incorporating individual career anchors and effect of institutional culture, for understanding ET professional formation, and (c) develop and pilot interventions aimed at transforming engineering formation systems in ET contexts. The three interdisciplinary theoretical frameworks integrated to guide design and analysis of this research study are social cognitive career theory (SCCT) [2], Schein’s career anchors which focuses on individual career orientation [3], and the Hughes value framework focused on the organization [4]. SCCT which links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes ties the individual career anchors to the institutional context of the Hughes framework [2]. To date, the project has collected and analyzed quantitative data from over 330 participants who are two-year college ET students, two-year college transfer students, and early career ET professionals. Qualitative data from historical institutional documents has also been collected and analyzed. Initial analyses have revealed gaps and needed areas of support for ET students in the area of professional formation. Thus far, the identified gaps are in institutional policy (i.e. lack of articulation agreements), needed faculty professional development (i.e. two-year faculty on specific career development and professional ET formation needs and four-year faculty on unique needs of transfer students), missing curriculum and resources supporting career development and professional formation of ET students, and integration of transfer student services focusing on connecting faculty and advisors across both institutional levels and types of programs. Significant gaps in the research promoting understanding of the role of ET and unique professional formation needs of these students were also confirmed. This project has been successful at helping to broaden participation in ET engineering education through integrating new participants into activities (new four-year institutional stakeholders, new industry partners, new faculty and staff directly and indirectly working with ET students) and through promoting disciplinary (engineering education and ET) and cross disciplinary collaborations (human resource development, higher education leadership, and student affairs). With one year remaining before completion of this project, this project has promoted a better understanding of student and faculty barriers supporting career development for ET students and identified need for career development resources and curriculum in ET. Words: 498 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [3] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [4] Hughes, C. (2014, Spring). Conceptualizing the five values of people and technology development: Implications for human resource managmeent and development. Workforce Education Forum, 37(1), 23-44. 
    more » « less
  2. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
    more » « less
  3. Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. A<sc>bstract</sc>

    The production of strange hadrons ($$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, Λ, Ξ±, and Ω±), baryon-to-meson ratios (Λ/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, Ξ/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, and Ω/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0), and baryon-to-baryon ratios (Ξ/Λ, Ω/Λ, and Ω/Ξ) associated with jets and the underlying event were measured as a function of transverse momentum (pT) in pp collisions at$$ \sqrt{s} $$s= 13 TeV and p Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, Ξ±and Ω±, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p–Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadronpT(0.6–6 GeV/c). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with Pythia8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadronpTregion. The maximum deviation is observed for Ξ±and Ω±which reaches a factor of about six. The event multiplicity dependence is further investigated in p−Pb collisions. In contrast to what is observed in the underlying event, there is no significant event-multiplicity dependence for particle production in jets. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Abstract A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb–Pb collisions at $$\sqrt{s_\text {NN}}$$ s NN  = 2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. Abstract

    A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p–Pb collisions at a center-of-mass energy per nucleon–nucleon collision of$$\sqrt{s_{\textrm{NN}}}~=~5.02$$sNN=5.02 TeV using the ALICE detector in the forward pseudorapidity region 2.3 $$<~\eta _\textrm{lab} ~<$$<ηlab< 3.9 is presented. Measurements in p–Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p–Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p–Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in pp collisions and for different centrality classes in p–Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. A<sc>bstract</sc>

    This article reports measurements of the angle between differently defined jet axes in pp collisions at$$ \sqrt{s} $$s= 5.02 TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parametersR= 0.2 and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, ∆Raxis, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The ∆Raxisobservable is presented for 20<$$ {p}_{\textrm{T}}^{\textrm{ch}\ \textrm{jet}} $$pTchjet<100 GeV/c, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins-Soper-Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell-Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  9. Free, publicly-accessible full text available July 1, 2024