skip to main content


Search for: All records

Creators/Authors contains: "Huguenard, Kimberly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Connecticut River plume interacts with the strong tidal currents of the ambient receiving waters in eastern Long Island Sound. The plume formed during ambient flood tides is studied as an example of tidal river plumes entering into energetic ambient tidal environments in estuaries or continental shelves. Conservative passive freshwater tracers within a high-resolution nested hydrodynamic model are applied to determine how source waters from different parts of the tidal cycle contribute to plume composition and interact with bounding plume fronts. The connection to source waters can be cut off only under low-discharge conditions, when tides reverse surface flow through the mouth after max ambient flood. Upstream plume extent is limited because ambient tidal currents arrest the opposing plume propagation, as the tidal internal Froude number exceeds one. The downstream extent of the tidal plume always is within 20 km from the mouth, which is less than twice the ambient tidal excursion. Freshwaters in the river during the preceding ambient ebb are the oldest found in the new flood plume. Connectivity with source waters and plume fronts exhibits a strong upstream-to-downstream asymmetry. The arrested upstream front has high connectivity, as all freshwaters exiting the mouth immediately interact with this boundary. The downstream plume front has the lowest overall connectivity, as interaction is limited to the oldest waters since younger interior waters do not overtake this front. The offshore front and inshore boundary exhibit a downstream progression from younger to older waters and decreasing overall connectivity with source waters. Plume-averaged freshwater tracer concentrations and variances both exhibit an initial growth period followed by a longer decay period for the remainder of the tidal period. The plume-averaged tracer variance is increased by mouth inputs, decreased by entrainment, and destroyed by internal mixing. Peak entrainment velocities for younger waters are higher than values for older waters, indicating stronger entrainment closer to the mouth. Entrainment and mixing time scales (1–4 h at max ambient flood) are both shorter than half a tidal period, indicating entrainment and mixing are vigorous enough to rapidly diminish tracer variance within the plume. 
    more » « less
  2. Abstract The mixing of river plumes into the coastal ocean influences the fate of river-borne tracers over the inner-shelf, though the relative importance of mixing mechanisms under different environmental conditions is not fully understood. In particular, the contribution to plume mixing from bottom generated shear stresses, referred to as tidal mixing, is rarely considered important relative to frontal and stratified shear (interfacial) mixing in surface advected plumes. The effect of different mixing mechanisms is investigated numerically on an idealized, tidally pulsed river plume with varying river discharge and tidal amplitudes. Frontal, interfacial, and tidal mixing are quantified via a mixing energy budget to compare the relative importance of each to the overall buoyancy flux over one tide. Results indicate that tidal mixing can dominate the energy budget when the tidal mixing power exceeds that of the input buoyancy flux. This occurs when the non-dimensional number, Ri E (the estuarine Richardson number divided by the mouth Rossby number), is generally less than 1. Tidal mixing accounts for between 60% and 90% of the net mixing when Ri E < 1, with the largest contributions during large tides and low discharge. Interfacial mixing varies from 10% to 90% of total mixing and dominates the budget for high discharge events with relatively weaker tides ( Ri E > 1). Frontal mixing is always less than 10% of total mixing and never dominates the budget. This work is the first to show tidal mixing as an important mixing mechanism in surface advected river plumes. 
    more » « less
  3. Abstract

    Microstructure profiling was utilized to estimate vertical mixing (via vertical turbulent buoyancy flux) during a tidal pulse in the interior Merrimack River plume in calm winds. Multiple stratified shear mixing regimes appear and evolve with time. Initially the plume acts as a nearfield jet, with mixing in the plume (plume layer mixing) and over the plume‐ambient interface (nearfield interfacial mixing). As the plume grows, interfacial mixing is suppressed offshore of the nearfield as currents slow, diminishing turbulent exchange between plume and shelf. At the end of ebb, ambient tidal currents reverse direction below plume, initiating another mode of internal, interfacial mixing (coined here as tidal interfacial mixing), allowing exchange between plume and ambient waters offshore. This work highlights previously unreported tidally modulated mixing within the near and midfield of a river plume.

     
    more » « less
  4. Abstract

    The impact of a floating oyster aquaculture farm on the intratidal dynamics of a low inflow estuary was investigated using field observations and an idealized numerical model. Measurements of current velocities, temperature, electrical conductivity, and velocity shear were collected around a floating oyster farm during two semidiurnal tidal cycles in a curved portion of the estuary. During flood, farm‐induced friction enhanced the lateral straining of velocity shears, which induced vertical mixing near the surface and extended the farm's frictional footprint. The streamwise flow reduction near the farm limited the development of lateral circulation. During ebb, flows largely bypassed the farm, which resulted in a weaker streamwise flow reduction through the farm and allowed the lateral circulation to develop across the estuary. To capture the farm effects in numerical simulations, a bulk drag coefficient for the farm was calculated as 8.4 × 10−3 ± 9.1 × 10−4, while the drag for a single cage ranged from 0.58 to 0.92. An idealized simulation in the Regional Ocean Modeling System (ROMS) demonstrated that the limited development of lateral circulation during flood was due to farm‐imposed friction rather than the combined influence of channel‐shoal morphology and the natural channel bend. These results showed that even though a farm may encompass a small portion of the estuary, it can affect the momentum and mixing outside of the immediate farm area. Therefore, it is important to consider the hydrodynamic responses of farms in estimates of carrying capacity and siting decisions.

     
    more » « less
  5. Abstract

    Submerged aquatic vegetation (SAV) provides primary products for the food web, as well as shelter and nursery for many juvenile species. SAV can also attenuate waves, stabilize the seabed, and improve water quality. These environmental services are influenced by the dynamic motion of SAV. In this paper, a consistent‐mass cable model was developed to investigate flow interaction with a flexible vegetation blade. Compared with previous vegetation models, the cable model showed improvements in simulating blade motions in waves with and without currents, especially for “second‐normal‐mode‐like” blade motion. Wave asymmetry would cause blade motion to be asymmetric. However, asymmetric blade motion may also occur in symmetric waves. Results indicate that the asymmetric blade motion in symmetric waves is induced by two major mechanisms: (i) the spatial asymmetry of the encountered wave orbital velocities (wave motion relative to blade) due to blade displacements and (ii) the asymmetric action on the blade by vertical wave orbital velocities. Consequently, the blade motion is asymmetric even underneath symmetric waves unless (i) blade length () is much smaller than the wavelength (), (ii) blade length is much smaller than the water depth () in finite water depth waves, or (iii) water depth is much smaller than the wavelength (). Peak asymmetric blade motion occurs asincreases to a critical value. The peak asymmetry increases with wave height and blade length but decreases with increasing blade flexural rigidity. Blade motion characteristics play an important role in wave‐vegetation interaction, wave‐driven currents, wave‐attenuation capacity, breakage of vegetation and ecosystem services.

     
    more » « less
  6. Abstract

    The Damariscotta River in midcoast Maine is a weakly stratified estuary characterized by several constrictions and channel bends that affect tidal asymmetry and material transport. Microstructure and current velocity measurements were collected at a cross‐channel transect in the northern reach of the estuary during spring and neap tidal conditions to study the effects of a channel bend immediately upstream of a constricted sill on intratidal dynamics. During the flood phase, a counterclockwise gyre is formed upstream of the headland, which enhances landward‐directed flow in the channel and is countered by seaward‐directed flow over the shallow shoal. Semidiurnal and quarter‐diurnal patterns of lateral advection and stress divergence emerge in the surface layer because of these secondary flows. Lateral advection effects dominate the dynamics in neap tide, and although they are stronger in spring tide, they are partially obscured by bottom friction forces that are proportional to the along‐channel velocity squared. A novel harmonic decomposition technique is introduced to determine the relative importance of advection and stress divergence on quarter‐diurnal velocity generation, and their implications to neap/spring variability in estuarine water quality are discussed.

     
    more » « less