skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hund, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Helminths infect humans, livestock, and wildlife, yet remain understudied despite their significant impact on public health and agriculture. Because many of the most prevalent helminth‐borne diseases are zoonotic, understanding helminth transmission among wildlife could improve predictions and management of infection risks across species. A key challenge to understanding helminth transmission dynamics in wildlife is accurately and quantitatively tracking parasite load across hosts and environments. Traditional methods, such as visual parasite identification from environmental samples or infected hosts, are time‐consuming, while standard molecular techniques (e.g., PCR and qPCR) often lack the sensitivity to reliably detect lower parasite burdens. These limitations can underestimate the prevalence and severity of infection, hindering efforts to manage infectious diseases. Here, we developed a multiplexed droplet digital PCR (ddPCR) assay to quantify helminth loads in aquatic habitats using 18S rRNA target genes. UsingSchistocephalus solidusand their copepod hosts as a case study, we demonstrate ddPCR's sensitivity and precision. The assay is highly reproducible, reliably detecting target genes at concentrations as low as 1 pg of DNA in lab standards and field samples (multi‐species and eDNA). Thus, we provide a toolkit for quantifying parasite load in intermediate hosts and monitoring infection dynamics across spatio‐temporal scales in multiple helminth systems of concern for public health, agriculture, and conservation biology. 
    more » « less
  2. Huang, Jen-Pan; Zelditch, Miriam (Ed.)
    The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern. 
    more » « less
  3. null (Ed.)