- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hung, Hsin-Wei (3)
-
Liu, Yingtong (2)
-
Amiri Sani, Ardalan (1)
-
Amiri_Sani, Ardalan (1)
-
Sani, Ardalan Amiri (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The eBPF technology in the Linux kernel has been widely adopted for different applications, such as networking, tracing, and security, thanks to the programmability it provides. By allowing user-supplied eBPF programs to be executed directly in the kernel, it greatly increases the flexibility and efficiency of deploying customized logic. However, eBPF also introduces a new and wide attack surface: malicious eBPF programs may try to exploit the vulnerabilities in the eBPF subsystem in the kernel. Fuzzing is a promising technique to find such vulnerabilities. Unfortunately, our experiments with the stateof-the-art kernel fuzzer, Syzkaller, show that it cannot effectively fuzz the eBPF runtime, those components that are in charge of executing an eBPF program, for two reasons. First, the eBPF verifier (which is tasked with verifying the safety of eBPF programs) rejects many fuzzing inputs because (1) they do not comply with its required semantics or (2) they miss some dependencies, i.e., other syscalls that need to be issued before the program is loaded. Second, Syzkaller fails to attach and trigger the execution of eBPF programs most of the times. This paper introduces the BPF Runtime Fuzzer (BRF), a fuzzer that can satisfy the semantics and dependencies required by the verifier and the eBPF subsystem. Our experiments show, in 48-hour fuzzing sessions, BRF can successfully execute 8× more eBPF programs compared to Syzkaller (and 32× more programs compared to Buzzer, an eBPF fuzzer released recently from Google). Moreover, eBPF programs generated by BRF are much more expressive than Syzkaller’s. As a result, BRF achieves 101% higher code coverage. Finally, BRF has so far managed to find 6 vulnerabilities (2 of them have been assigned CVE numbers) in the eBPF runtime, proving its effectiveness.more » « less
-
Hung, Hsin-Wei; Liu, Yingtong; Amiri Sani, Ardalan (, ACM MobiCom)
-
Liu, Yingtong; Hung, Hsin-Wei; Sani, Ardalan Amiri (, Proceedings of the Fifteenth European Conference on Computer Systems)
An official website of the United States government
