skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hung, Terry Y. T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spin Orbit Torque Magnetic RAM (SOT-MRAM) is emerging as a promising memory technology owing to its high endurance, reliability and speed. A critical factor for its success is the development of materials that exhibit efficient conversion of charge current to spin current, characterized by their spin Hall efficiency. In this work, it is experimentally demonstrated that the spin Hall efficiency of the industrially relevant ultra-thin Ta can be enhanced by more than 25× when a monolayer (ML) WSe2is inserted as an underlayer. The enhancement is attributed to spin absorption at the Ta/WSe2interface, suggested by harmonic Hall measurements. The presented hybrid spin Hall stack with a 2D WSe2underlayer has a total body thickness of less than 2 nm and exhibits greatly enhanced spin Hall efficiency, which makes this hybrid a promising candidate for energy efficient SOT-MRAM.

     
    more » « less