skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hung, Yu-Hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops. Often considered to be genome ‘parasites’, transposable elements (TEs) evolved to insert their DNA seamlessly into genomes. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean—a major global crop in need of targeted insertion technology. We have engineered a TE ‘parasite’ into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes. 
    more » « less
  2. Abstract The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein’s function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins. 
    more » « less
  3. The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the central cell genome prior to fertilization. This epigenetic reconfiguration of the female gamete companion cell establishes gene imprinting in the endosperm and is essential for seed viability. DME demethylates small and genic-flanking transposons as well as intergenic and heterochromatin sequences, but how DME is recruited to these loci remains unknown. H1.2 was identified as a DME-interacting protein in a yeast two-hybrid screen, and maternal genome H1 loss affects DNA methylation and expression of selected imprinted genes in the endosperm. Yet, the extent to which H1 influences DME demethylation and gene imprinting in the Arabidopsis endosperm has not been investigated. Here, we showed that without the maternal linker histones, DME-mediated demethylation is facilitated, particularly in the heterochromatin regions, indicating that H1-bound heterochromatins are barriers for DME demethylation. Loss of H1 in the maternal genome has a very limited effect on gene transcription or gene imprinting regulation in the endosperm; however, it variably influences euchromatin TE methylation and causes a slight hypermethylation and a reduced expression in selected imprinted genes. We conclude that loss of maternal H1 indirectly influences DME-mediated demethylation and endosperm DNA methylation landscape but does not appear to affect endosperm gene transcription and overall imprinting regulation. 
    more » « less
  4. null (Ed.)
  5. The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the maternal genome in the central cell prior to fertilization and is essential for seed viability. DME preferentially targets small transposons that flank coding genes, influencing their expression and initiating plant gene imprinting. DME also targets intergenic and heterochromatic regions, but how it is recruited to these differing chromatin landscapes is unknown. The C-terminal half of DME consists of 3 conserved regions required for catalysis in vitro. We show that this catalytic core guides active demethylation at endogenous targets, rescuing dme developmental and genomic hypermethylation phenotypes. However, without the N terminus, heterochromatin demethylation is significantly impeded, and abundant CG-methylated genic sequences are ectopically demethylated. Comparative analysis revealed that the conserved DME N-terminal domains are present only in flowering plants, whereas the domain architecture of DME-like proteins in nonvascular plants mainly resembles the catalytic core, suggesting that it might represent the ancestral form of the 5mC DNA glycosylase found in plant lineages. We propose a bipartite model for DME protein action and suggest that the DME N terminus was acquired late during land plant evolution to improve specificity and facilitate demethylation at heterochromatin targets. 
    more » « less