skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Huning, Laurie S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. null (Ed.)
    Abstract In the wake of climate change, extreme events such as heatwaves are considered to be key players in the terrestrial biosphere. In the past decades, the frequency and severity of heatwaves have risen substantially, and they are projected to continue to intensify in the future. One key question is therefore: how do changes in extreme heatwaves affect the carbon cycle? Although soil respiration (Rs) is the second largest contributor to the carbon cycle, the impacts of heatwaves on Rs have not been fully understood. Using a unique set of continuous high frequency in-situ measurements from our field site, we characterize the relationship between Rs and heatwaves. We further compare the Rs response to heatwaves across ten additional sites spanning the contiguous United States (CONUS). Applying a probabilistic framework, we conclude that during heatwaves Rs rates increase significantly, on average, by ~ 26% relative to that of non-heatwave conditions over the CONUS. Since previous in-situ observations have not measured the Rs response to heatwaves (e.g., rate, amount) at the high frequency that we present here, the terrestrial feedback to the carbon cycle may be underestimated without capturing these high frequency extreme heatwave events. 
    more » « less
  3. Abstract

    Merging multiple data streams together can improve the overall length of record and achieve the number of observations required for robust statistical analysis. We merge complementary information from different data streams with a regression-based approach to estimate the 1 April snow water equivalent (SWE) volume over Sierra Nevada, USA. We more than double the length of available data-driven SWE volume records by leveragingin-situsnow depth observations from longer-length snow course records and SWE volumes from a shorter-length snow reanalysis. With the resulting data-driven merged time series (1940–2018), we conduct frequency analysis to estimate return periods and associated uncertainty, which can inform decisions about the water supply, drought response, and flood control. We show that the shorter (~30-year) reanalysis results in an underestimation of the 100-year return period by ~25 years (relative to the ~80-year merged dataset). Drought and flood risk and water resources planning can be substantially affected if return periods of SWE, which are closely related to potential flooding in spring and water availability in summer, are misrepresented.

    more » « less
  4. Snow plays a fundamental role in global water resources, climate, and biogeochemical processes; however, no global snow drought assessments currently exist. Changes in the duration and intensity of droughts can significantly impact ecosystems, food and water security, agriculture, hydropower, and the socioeconomics of a region. We characterize the duration and intensity of snow droughts (snow water equivalent deficits) worldwide and differences in their distributions over 1980 to 2018. We find that snow droughts became more prevalent, intensified, and lengthened across the western United States (WUS). Eastern Russia, Europe, and the WUS emerged as hot spots for snow droughts, experiencing ∼2, 16, and 28% longer snow drought durations, respectively, in the latter half of 1980 to 2018. In this second half of the record, these regions exhibited a higher probability (relative to the first half of the record) of having a snow drought exceed the average intensity from the first period by 3, 4, and 15%. The Hindu Kush and Central Asia, extratropical Andes, greater Himalayas, and Patagonia, however, experienced decreases (percent changes) in the average snow drought duration (−4, −7, −8, and −16%, respectively). Although we do not attempt to separate natural and human influences with a detailed attribution analysis, we discuss some relevant physical processes (e.g., Arctic amplification and polar vortex movement) that likely contribute to observed changes in snow drought characteristics. We also demonstrate how our framework can facilitate drought monitoring and assessment by examining two snow deficits that posed large socioeconomic challenges in the WUS (2014/2015) and Afghanistan (2017/2018).

    more » « less